Interactive Visual Music with Csound and
HTML5

Michael Gogins!

Irreducible Productions
michael.gogins@gmail.com

Abstract. This paper discusses aspects of writing and performing in-
teractive visual music, where the artist controls, in real time, a comput-
erized process that simultaneously generates both visuals and music. An
example piece based on Csound and HTMLS5 is presented.

Keywords: Visual music, generative art, algorithmic composition, com-
puter music, Csound, HTML5

1 Introduction

This paper presents an approach to writing interactive visual music using Csound
[1] [2] [3] with HTML5. Artistic and technical problems are discussed, and some
solutions are presented in the context of an example piece [4] that runs on
csound.node [5] [6], currently the most stable and highest-peforming HTML5
environment for Csound. These techniques also work in Csound for Android [7]
[8], PNaCl [9] [10], Emscripten [11] [12], and WebAssembly [14] [6]. In all these,
Csound appears in the JavaScript context as a csound object that exposes the
Csound API [15]. Note: By 2018 or so browsers are expected to have deprecated
all other “native” execution environments in favor of WebAssembly.

HTMLS is the programming environment of current Web browsers. It is
a world standard [16] with vast capabilities [17] that are programmable in
JavaScript [18] [19]. In addition to HTML and JavaScript for defining user in-
terfaces, features relevant to visual music include three-dimensional, animated
computer graphics (WebGL) and high-resolution audio (WebAudio).

Visual music can mean (a) purely visual displays having a music-like evolu-
tion in time; (b) visualizations of music; or (c) a hybrid art in which the author,
perhaps using software or other automatic processes, generates both visual and
musical forms. This last type is the subject of this paper — in particular, where
one process is performed interactively, in an improvisational way, to generate
both visuals and sounds. In any case, visual music tends to abstraction, other-
wise it would be no different from music videos.

The pioneers of visual music were the typical lot of visionary outsiders [20].
Walt Disney’s Fantasia [21] showed stellar examples. Later, experimental film-
makers created some visual music [22], still later light shows [23] became stan-
dard at concerts of psychedelic music, and from the late 1970s the demoscene

2 Michael Gogins

[24] [25] showed programmed animations with musical accompaniment, some of
high quality. Visual music became notable in computer music starting perhaps
with Circles and Rounds by Dennis Miller at the 2006 ICMC [26].

2 Technical Problems (and Some Solutions)

Artistic issues are more important than technical ones, but technology must be
discussed first as it is the foundation for the art. Historically the technical issues
with visual music have been expensive tools, expensive labor, and incompatible
standards. As computer power has doubled and redoubled every year or so, the
problem of expensive tools has been mooted, the problem of expensive labor has
not changed, and the problem of incompatible standards has perhaps worsened.

Visual music started with painting both images and sounds by hand on movie
film. Then of course hand-drawn animation became highly developed, followed
by all kinds of tricks used in experimental film. Eventually these were built
into hardware for editing film or video with “effects,” and then into software
for computer animation. Today these technologies are collected in commercial
applications such as 3ds Studio Max [27], open source software such as Blender
[28] and Processing [29], and game engines such as Unreal [30] and Unity [31].
But this profusion of tools has not solved the problem of labor — see the amazing
list of credits for any blockbuster animated film — and also has contributed to
the problem of incompatible standards. As in other computer-based arts, there
is now a Babel of applications and languages that tends to fragment the field as
different artists choose different software for different reasons, and thus lose the
ability to understand each other on a technical level.

All the above-mentioned software packages are just different containers for
the same algorithms: time lines, scene graphs, texture mappings, shaders, con-
volvers and filters, software synthesizers, etc. And these are all present in the
JavaScript context of standard Web browsers where they run at high speed by
virtue of SIMD, GLSL, and expertly written C+4. In short, HTML5 offers a
viable solution to the problems of expensive tools and incompatible standards.

Blender, Processing, and the Unity engine offer similar solutions but, as
Csound is arguably the most powerful software synthesizer and can be used
directly in HTML5 via csound.node or Csound for WebAssembly, Csound in
HTMLS5 offers a standards-based, high-performance platform for visual music.

Technical issues arise not only from the platform, but also from the artistic
objectives. These are considered in the next section.

But first, here is an overview of the architecture of the example piece [4] run-
ning in csound.node (similar designs would work in any other Csound/HTML5
environment). The piece itself is one Web page with all code, including Csound
itself and the Csound orchestra [4, lines 87-239], either embedded in the page
or loaded locally. The user interface consists of sliders and key bindings with
JavaScript event handlers, defined using the dat.gui library [32] [4, lines 1172-
1219]. An embedded style sheet formats the elements [4, lines 7-52]. The gener-
ating process is a real-time GLSL [33] animation, a “shader toy” [34] adapted

Visual Music with Csound 3

from the work of lomateron [35], which computes an animated fractal at excep-
tionally high speed on the massively parallel, dedicated GPU of the computer
[4, lines 240-297]. JavaScript code samples pixels from the drawing buffer in real
time [4, lines 994-1030] and translates them into musical notes [4, lines 974-992]
that are sent to a running instance of Csound, which is called by the WebAudio
driver to play the sound.

3 Artistic Problems (and Some Solutions)

In visual music, usually the music comes first and then the visuals (“light
shows”), or the visuals come first and then the music (experimental films or
demos with derivative music). Either way, one half of the visual music equation
usually suffers by comparison with the other half. In theory, this imbalance can
be righted by generating both visuals and music from the same process:

1. Both visuals and music are generated by the same underlying, more abstract
process. This is rare, as usually the processes have already been designed for
one purpose or the other.

2. The music generator is sampled or processed to also generate the visuals.
This is quite common.

3. The visual generator is sampled or processed to also generate the music. This
is not so common, but not unknown.

Understanding the tradeoffs of the second and third options requires analysis.

3.1 Bandwidth and Format Disparities

Both visuals and music can be digitally processed at different levels of abstrac-
tion. For visuals, the highest level of abstraction consists of scenes of geometric
objects or meshes covered with textures, illuminated by lights, and viewed by a
virtual camera; the lowest level of abstraction is a screen of pixels, a thousand
or so wide and high, presented at up to 60 or so frames per second.

A perspective rendering of three dimensions is very common, and virtual
realities that immerse the viewer in a stereoscopic perspective view are becoming
more common. But for the purposes of visual music, the perspective rendering
and the stereoscopic rendering are the same: a three-dimensional scene.

For music, the highest level of abstraction is the score, which consists of notes
assigned to instruments, which produce actual streams of audio that are further
processed and mixed. There are usually a few to a few dozen discrete notes per
second. (There can be an intermediate level of abstraction not considered here,
grains of sound that stream at a rate of hundreds or thousands per second.) The
lowest level of abstraction is 44,100 to 96,000 frames per second of stereo (or,
increasingly, multi-channel) audio samples.

There are obvious disparities of data formats and rates between visuals and
music. At the highest level of abstraction, dozens to thousands of visual objects

4 Michael Gogins

are moving, but no more than a dozen or so musical notes are moving. At
the lowest level of abstraction, for uncompressed raw data, the bandwidth of
high-definition video is on the order of 3,732,480,000 bits per second, whereas
the bandwidth of uncompressed high-definition stereo audio is on the order of
4,608,000 bits per second. In reality visual data is more redundant than audio
data; a compressed stream of video runs at about 30,000,000 bits per second,
whereas a compressed stream of audio runs at about 500,000 bits per second.
Hence visual bandwidth runs about 60 times audio bandwidth.

Finally, the visuals are not always computed as objects in a scene; they
may be computed directly at the pixel level. This is attractive, because HTML5
environments can execute runtime-compiled “shader” programs, which operate
directly on pixels, on the graphics processing unit (GPU) at much higher speeds
than on the general purpose central processing unit (CPU).

The much greater data bandwidth of visuals is one reason it makes sense to
derive the music from the visuals, instead of the other way round. But then it also
becomes necessary not only to map the visual data to musical parameters, but
also to filter or reduce the density of data — while still preserving a perceptible
relationship between the visuals and the music.

3.2 Mapping, Triggering, and Filtering

“Mapping” actually involves dimensional mapping, filtering to reduce the data
bandwidth, and triggering musical events. Triggered events may in addition be
post-processed, e.g. to tie overlapping notes, or to fit into a harmony.

Dimensional Mapping Mapping visual objects to music is complex, and must
be considered case by case. Such a mapping amounts to using the visuals as a
sort, of score for the music. A minimal set of dimensions for visual objects might
be the following. Lower-case letters stand for visual attributes, and upper-case
letters for musical attributes.

t Time Real Seconds from beginning of performance.
a Horizontal Cartesian coordinate Real Arbitrary units
y Vertical Cartesian coordinate Real Arbitrary units
z Depthwise Cartesian coordinate Real Arbitrary units

For mapping visual objects to musical events, musical attributes can be com-
puted from, or even attached to, the objects in the scene, thus reinforcing its
dual role as a score. Mapping visual pixels is more straightforward, as there is
the following fixed set of dimensions:

Visual Music with Csound 5

t Time Real Seconds from beginning of performance
x Horizontal Cartesian coordinate Integer 0 to image width
y Vertical Cartesian coordinate Integer 0 to image heght

h Hue Real 0 through 1
s Saturation Real 0 through 1
v Value (brightness) Real 0 through 1

The dimensions of notes, at a useful minimum, are:

T Time Real Seconds from beginning of performance
I Instrument Integer O to Ipsqz

K MIDI key Real Kjsin through K,

V' MIDI velocity Real ~ Vasy, through Viase,

P Stereo pan Real —1 through 1

Given the dimensional units with their minima and maxima, the actual map-
pings are obvious. For animated visuals [4, lines 922-992]:

T=t
I'=[1+2/Tnas)
K = [(y/ymaz) Knraz — Katin) + Knrin]
V =v(Viaz — Vrin) + Varin
P=s2-1

Such mappings are necessary but not sufficient. Visual bandwidth is still far
greater than musical bandwidth, so the number of events must be cut down even
further without breaking the perceptible relation between visuals and music.

To accomplish this, musical events can be triggered only from the most salient
visual events. Then, the triggered events can be filtered to further cut down the
number of events.

Triggering In the retina, a neural network specializes in detecting edges. Here,
edges can similarly be used to detect easily perceptible events. (An actual com-
puterized neural network could perhaps be used to identify these features.)

For animated visuals, an edge occurs when, for a single pixel, the color at
frame f; changes at time f;y;. When the value of a pixel changes from a level
below a threshold, to a level at or above that threshold, a note on event is
triggered [4, lines 1017-1020]; and when the value changes from a level at or
above that threshold, to a level below that threshold, a note off event is triggered
[4, lines 1021-1024].

This already reduces the visual bandwidth by a considerable amount, as no
new musical events are generated at a pixel while its color remains stable from
frame to frame, or its value does not cross the threshold.

However, for animated visuals, this still creates too many musical events per
second. Additional filtering or sampling must also be used.

6 Michael Gogins

Filtering and Sampling The kind of filtering or sampling required obviously
differs between objects and pixels. In the case of objects, for example, only the
centers of volume could be considered, or even only a certain level of ramification
in the tree of objects in the scene graph. In the case of pixels, which is considered
here, the actual grid of pixels can be sampled at some modulus of its width and
height [4, lines 1003-1007], or along radii from the center, or so on. If only every
1000th pixel is sampled, the artistic intelligibility of the relationship between the
visuals and the music may suffer; this must be judged case by case. To restore
intelligibility, the sizes of visual features can perhaps be increased.

Experience shows that the correlation between visual and musical events need
by no means be constant. If there is some perceptible synchrony every bar or so,
that seems to do the job.

4 Improvisational Control

The whole purpose of the approach to visual music discussed here is to put on
a show: to improvise a work of visual music involving both visual and audible
forms.

For a single performer to do this, the controls must be manageable. The
computer mouse and keyboard provide a limited palette of control gestures.
But if the process generating the visual music is a fractal or recursive process
controlled by a few numerical parameters, a few gestures suffice for playing [4,
lines 1312-1346]. A few key combinations can also be dedicated to changing the
arrangement or tonality of the music, for example by applying voice-leading
transformations that generate chord progressions in the music [4, lines 1279-
1309].

References

1. Csound home page, http://csound.github.io

2. Lazzarini, V. et al.: Csound: A Sound and Music Computing System. Springer (2016)
3. Boulanger, R. (ed.): The Csound Book. The MIT Press (2000)

4. AuthorA: Csound Visual Music Example, https://AuthorA.github.io://csound/

csound_visual_music.html. This piece requires NW.js and csound.node to run.

. NW.js, https://nwjs.io/.

6. Gogins, M.: csound.node, https://github.com/csound/csound/tree/develop/
frontends/nwjs.

7. Yi, S. and Lazzarini, V.: Csound for Android. In: Proceedings of the Linux Audio
Conference 2012, pp. 29-34. Stanford (2012).

8. Csound for Android App, https://play.google.com/store/apps/details?id=
com.csounds.Csound6&hl=en.

9. NaCl and PNa(Cl], https://developer.chrome.com/native-client/
nacl-and-pnacl.

10. Csound for PNaCl, https://github.com/csound/csound/tree/develop/nacl.

11. emscripten, http://kripken.github.io/emscripten-site/.

ot

http://csound.github.io
https://AuthorA.github.io://csound/csound_visual_music.html
https://AuthorA.github.io://csound/csound_visual_music.html
https://nwjs.io/
https://github.com/csound/csound/tree/develop/frontends/nwjs
https://github.com/csound/csound/tree/develop/frontends/nwjs
https://play.google.com/store/apps/details?id=com.csounds.Csound6&hl=en
https://play.google.com/store/apps/details?id=com.csounds.Csound6&hl=en
https://developer.chrome.com/native-client/nacl-and-pnacl
https://developer.chrome.com/native-client/nacl-and-pnacl
https://github.com/csound/csound/tree/develop/nacl
http://kripken.github.io/emscripten-site/

Visual Music with Csound 7

12. Csound for Emscripten, https://github.com/csound/csound/tree/develop/
emscripten.

13. WebAssembly, http://webassembly.org/.

14. Csound for Emscripten (for WebAssembly see build-wasm.sh). https://github.
com/csound/csound/tree/develop/emscripten.

15. Csound API, http://csound.github.io/docs/api/index.html.

16. HTML5, https://wuw.w3.org/TR/2016/REC-htm151-20161101/.

17. HTML 5 Test, https://html5test.com/.

18. ECMAScript 2016 Language Specification, http://www.ecma-international.
org/ecma-262/7.0/index.html.

19. Flanagan, D.: JavaScript: The Definitive Guide (6th ed.). O’'Reilly (2011).

20. Brougher, K. et al.: Visual Music. Thames & Hudson (2005).

21. Culhane, J. and Walt Disney Productions: Walt Disney’s Fantasia. H.N.Abrams
(1983).

22. Rees, A.L.: A History of Experimental Film and Video (2nd ed.). British Film
Institute (2011).

23. The Joshua Light Show, http://www. joshualightshow.com/about.

24. Demoscene Research, http://www.kameli.net/demoresearch2/.

25. Demoscene Portal, http://www.demoscene.info/the-demoscene/.

26. International Computer Music Association: International Computer Music Con-
ference (2006).

27. 3ds Studio Max, https://www.autodesk.com/products/3ds-max/overview.

28. Blender, https://www.blender.org/.

29. Processing, https://www.processing.org/.

30. Unreal Engine, https://www.unrealengine.com/.

31. Unity, https://unity3d.com/.

32. dat.gui, https://github.com/dataarts/dat.gui.

33. Kessenich, J.: The OpenGL Shading Language: Language Version 4.50. The
Khronos Group (2016).

34. Shadertoy, https://www.shadertoy.com/.

35. lomateron: Lights pattern generator, https://www.shadertoy.com/view/X13SzB.

36. Tasajarvi, L: Demoscene: The Art of Real Time. Even Lake Studios (2004).

https://github.com/csound/csound/tree/develop/emscripten
https://github.com/csound/csound/tree/develop/emscripten
http://webassembly.org/
https://github.com/csound/csound/tree/develop/emscripten
https://github.com/csound/csound/tree/develop/emscripten
http://csound.github.io/docs/api/index.html
https://www.w3.org/TR/2016/REC-html51-20161101/
https://html5test.com/
http://www.ecma-international.org/ecma-262/7.0/index.html
http://www.ecma-international.org/ecma-262/7.0/index.html
http://www.joshualightshow.com/about
http://www.kameli.net/demoresearch2/
http://www.demoscene.info/the-demoscene/
https://www.autodesk.com/products/3ds-max/overview
https://www.blender.org/
https://www.processing.org/
https://www.unrealengine.com/
https://unity3d.com/
https://github.com/dataarts/dat.gui
https://www.shadertoy.com/
https://www.shadertoy.com/view/Xl3SzB

	Interactive Visual Music with Csound and HTML5
	Introduction
	Technical Problems (and Some Solutions)
	Artistic Problems (and Some Solutions)
	Bandwidth and Format Disparities
	Mapping, Triggering, and Filtering
	Dimensional Mapping
	Triggering
	Filtering and Sampling

	Improvisational Control

