
Interactive Csound coding with Emacs

Hlöðver Sigurðsson

Abstract. This paper will cover the features of the Emacs package
csound-mode, a new major-mode for Csound coding. The package is in
most part a typical emacs major mode where indentation rules, comple-
tions, docstrings and syntax highlighting are provided.
With an extra feature of a REPL1, that is based on running csound
instance through the csound-api. Similar to csound-repl.vim[1] csound-
mode strives to enable the Csound user a faster feedback loop by offering
a REPL instance inside of the text editor. Making the gap between de-
velopment and the final output reachable within a real-time interaction.

1 Introduction

After reading the changelog of Emacs 25.1[2] I discovered a new Emacs feature of
dynamic modules, enabling the possibility of Foreign Function Interface(FFI).
Being insired by Gogins’s recent Common Lisp FFI for the CsoundAPI[3], I
decided to use this new feature and develop an FFI for Csound. I made the
dynamic module which ports the greater part of the C-lang’s csound-api and
wrote some of Steven Yi’s csound-api examples for Elisp, which can be found on
the Gihub page for CsoundAPI-emacsLisp[4].

This sparked my idea of creating a new REPL based Csound major mode for
Emacs. As a composer using Csound, I feel the need to be close to that which
I’m composing at any given moment. From previous Csound front-end tools I’ve
used, the time between writing a Csound statement and hearing its output has
been for me a too long process of mouseclicking and/or changing windows. I
needed something to enhance my Csound composition experience and I decided
to develop a new Csound major mode for Emacs, called simply csound-mode.

Other Emacs packages already exist for Csound, one called csound-x [5] and
an older one from John ffitch[6]. Both of them are based on dual mode between
orchestra and score, csound-x takes the dual mode setup presented in John’s
Emacs packages to a more complete level. That which differentiates csound-
mode from csound-x in terms of user experience is that csound-mode does not
attempt to separate a csound document(csd) in two modes and seeks to keep the
user in one buffer2. csound-x also makes Csound very configurable where paths
and options can be configured separately from global Csound options, csound-
mode tries to keep all Emacs configuration at minimum and respects all system
1 REPL stands for read-eval-print-loop and is a term that is used in many program-

ming languages that offer a language interpreter in a shell, like which can be found
in Python, Node and Clojure.

2 A buffer is an Emacs lingo for a window, as you can have multiple tabs open in many
text editors you can have multiple buffers running inside Emacs.



2 Hlöðver Sigurðsson

paths and global Csound configuration should one exist. Furthermore csound-x
or its dependencies are not compatible as of today with Emacs version 25 or
newer whereas csound-mode is not compatible with Emacs version 24.5 or older.

I hope this tool will be as useful for other composers as it is for me. In the
following sections I will go further into the mechanics of csound-mode.

2 Csound coding style

No official community driven Csound style guide exists, which makes Csound
coding style today rather unstandardized. When deciding on indentation rules
for csound-mode I had to make few opinionated decisions, based on common best
practices. Through informal observation of Csound code from various Csound
users throughout the years, it can be noticed that some coding tendencies are
fading away. For example indented instr statements are very rare in modern
Csound code.

instr 2
a1 oscil p4, p5, 1 ; p4=amp

out a1 ; p5=freq
endin

Fig. 1. Richard Boulanger’s toot2.orc

Rather in most cases, instr and endin statements are set to the beginning
of line with its body indented to right.

instr 1
aenv linseg 1,p3-.05,1,.05,0,.01,0
a1 oscili p4, 333, 1

outs a1*aenv,a1*aenv
endin

Fig. 2. John ffitch’s beast1.orc

What makes these two figures clear and easy to read, is the fact that a
visual distinction is given between the return value, operators/opcodes, input
parameters and optional comments at the end. While this holds true in most
cases, with the introduction of indented boolean blocks, this can quickly get
messy.



Interactive coding with Emacs 3

opcode envelope, a, iiii
iatt, idec, isus, irel xin

xtratim irel
krel release

if (krel == 1) kgoto rel
aenv1 linseg 0, iatt, 1, idec, isus
aenv = aenv1

kgoto done
rel:

aenv2 linseg 1, irel, 0
aenv = aenv1 * aenv2

done:
xout aenv
endop

Fig. 3. Jonathan Murphy’s UDO envelope.udo

Despite its old fashioned indentation in Fig 3, it can be seen that a code
with boolean blocks does not align well with code that is otherwise trying to
form vertical blocks based on outputs and operators. Therefore, as a matter of
opinionated taste, code that forms boolean blocks should be visually aligned to
one another, and for each new depth of nesting, an equal width of indentation
should be added. The following figure displays indentation pattern which follows
the default csound-mode indentation.

opcode gatesig, a, ak
atrig, khold xin
kcount init 0
asig init 0
kndx = 0
kholdsamps = khold * sr
while (kndx < ksmps) do

if(atrig[kndx] == 1) then
kcount = 0

endif
asig[kndx] = (kcount < kholdsamps) ? 1 : 0
kndx += 1
kcount += 1

od
xout asig

endop

Fig. 4. Steven Yi’s UDO gatesig.udo



4 Hlöðver Sigurðsson

In csound-mode the indentation width defaults to 2 spaces, this width is ad-
justable with a customizeable global variable in Emacs under csound-indentation-
spaces. Single line indentation is in Emacs by default bound to the <TAB> key,
like with most in Emacs, this is highly customizeable. csound-mode happens to
work very well with the minor-mode aggressive-indent-mode[7], which automates
indentation based on buffer’s current active major-mode indentation rules and
can in turn saves many keystrokes.

The score section is simpler and more straightforward in terms of inden-
tation as a score statement is separated with newlines. If we look at spread-
sheet applications like Microsoft Excel we see why they are useful for composing
Csound scores. They provide resizable vertical and horizontal blocks, giving a
clear distinction between each parameter field. csound-mode comes with the func-
tion csound-score-align-block that indents sequence of score events, separated by
newline. As will be mentioned later, csound-mode treats series of score events
seperated by newline as a score-block unit. The function csound-score-align-block
is as of current version bound to <C-c C-s>, by applying this function with the
cursor located anywhere within the score-block, all common score parameters
will adjusted to the same width.

i 1 0 100 440 0.000001
i 1 100 100 850 10
i 1 2000 1 60 1|

;; C-c C-s
i 1 0 100 440 0.000001
i 1 100 100 850 10
i 1 2000 1 60 1|

Fig. 5. Score-block transformation in csound-mode where the pipe character represents
cursor location.

By setting the variable csound-indentation-aggressive-score to true, the func-
tion csound-score-align-block will be called on every indentation command. This
function was designed function with aggressive-indentation-mode, but for very
long score blocks it may cost a lot of CPU.

In conclusion, the way which csound-mode indents Csound code is based on
the depth of nesting of boolean statements within the orchestra part or file of
given Csound code. And for the score part or file, no statement will be indented
to right but a possibility of aligning blocks of score statements is available to the
user.

3 Syntax highlighting

csound-mode utilizes the built in font-lock-mode to provide syntax highlighting.
Most colors can be modified via M-x customize-face if wished. For example if



Interactive coding with Emacs 5

the user wishes to change the color of i-rate variables, it would be found under
csound-font-lock-i-rate and global i-rate variables under csound-font-lock-global-
i-rate etc.

By default csound-mode comes with enabled rainbow delimited parameter
fields, meaning each parameter within a score statement will get a unique color,
up to 8 different colors before they repeat. This can potentially give visual aid
to scores statements that have many parameters. If wanted, this feature can be
turned off with the customizeable variable csound-rainbow-score-parameters-p.

4 Completions and documentation

Like most Emacs major-mode packages, csound-mode will also provide eldoc-
mode functionality and autocomplete, where autocomplete can be ac-mode or
the more modern version of it, company-mode. All the data for completions and
eldoc-mode is based on crude xml parsing of the Csound Manual, meaning that
some opcodes and symbols could be missing. The documentation data is stored
in a hash-map and is static, meaning that global symbols from UDOs (user
defined opcodes) evaluated into the Csound instance, do not enjoy the benefits
of font-lock syntax highlighting or company-mode completions.

The echo-buffer is where the docstrings from the autocomplete suggestions
and argument names are printed into. This is where eldoc-mode plays a big role
in csound-mode. While user is typing in values for a given opcode’s parameter,
eldoc will highlight the current argument at the point of the cursor. This works
on multiple lines for opcodes and operators, as well as for nested (functional-
style) opcodes calls, which are given argument values between parenthesis.

5 Csound interaction

Before talking about the Csound REPL, it’s worth mentioning the two "offline"
possibilites, namely the functions csound-play bound to <C-c C-p> and csound-
render bound to <C-c C-r>. Running those functions pops up compilation buffer
that gives user all logs printed to stdout and stderror from the command. Calling
csound-play is the same as if csound -odac file.csd would be typed into the
command line while csound-render would equal to csound -o filename.wav
filename.csd where csound-mode will prompt the user for a filename before
rendering.

When starting Csound REPL via csound-start-repl a new buffer called *Csound
REPL* will open. This buffer is running on CsoundInteractive for major-mode
and comint-mode as minor mode. comint-mode provides a prompt functionality,
enabling evaluation of the user input into the prompt, as well as storing history
of the commands given to the prompt. As of current version, score statements
are the only commands that the prompt understands, this is expected to be
extended in future versions.

With an open REPL buffer, a Csound instance is running in the background with



6 Hlöðver Sigurðsson

indefinite performance time. Through this Csound instance, live-coding and/or
live-interaction can take place, trough two different functions bounded to keys.
Which are csound-evaluate-region bound to <C-M-x> and csound-evaluate-line
bound to <C-x C-e>.

csound-evaluate-region is more dynamic of the two, it tries to recognize a
Csound score or orchestra statement at the point of cursor, which may or may
not cover multiple lines. After a Csound statement is recognized, the string is sent
to forementioned Csound instance to be evaluated, followed by a "special effect"
where the code that was recognized gets highlighted for a sub-second. The result
of this operation should get printed immediately into the REPL buffer, where
Csound may print syntax errors if one were found. csound-evaluate-line does the
same, but will only evaluate the current line of the cursor. csound-evaluate-line
could be more convenient to run within score blocks, as csound-evaluate-region
will send all the score statements separated by newline into the Csound instance.
As a use-case example, a composer has with these functions the possibility to
compose short phrases/bars at a time, separated by newlines and have Csound
play immediately the evaluated phrase, as well as evaluating one single score line
to hear how one note sounds within a block of notes.

Note that csound-mode has a built-in transformation of the score-blocks that
are being evaluated. Trough this transformation the lowest value of p2 in the
score-block is subtracted from all p2 and p3 fields. This eliminates all waiting
time for scores-blocks that have long starting time (high p2 value), but could in
some cases be unwanted, in which case playing the file "offline" via csound-play
could be more suitable option.

6 Conclusion

csound-mode is new and growing package that provides set of functionalities
aimed to enhance the flow of the composer. csound-mode is developed by a
seasoned Emacs user for Emacs users, which may set a barrier for potential
new users of csound-mode without prior knowledge of the text editor Emacs.
Unlike CsoundQt, csound-mode does not come with Csound Manual lookup
functionality and provides only short documentation snippets via autocomplete
and eldoc-mode. csound-mode is also the only Emacs package for Csound that
is now available on MELPA, which is the largest package manager for Emacs
packages. Being a new package, it’s not battle tested and has potentially bugs,
which is why I think it’s important that csound-mode has a github page where
future users can report bugs, suggest improvements and submit pull-requests.
Something that other Emacs packages for Csound have lacked up to this point.

References

1. Steven Yi. csound-repl.vim. https://github.com/kunstmusik/csound-repl, 2016.
2. Mickey Petersen. What’s new in emacs 25.1. https://www.masteringemacs.org/

article/whats-new-in-emacs-25-1, 2016.

https://github.com/kunstmusik/csound-repl
https://www.masteringemacs.org/article/whats-new-in-emacs-25-1
https://www.masteringemacs.org/article/whats-new-in-emacs-25-1


Interactive coding with Emacs 7

3. Michael Gogins. Steel bank common lisp ffi interface to csound.h. https://github.
com/csound/csound/blob/7b4cebf8cf0a3f49232123ee3d752db2116c4c6c/
interfaces/sb-csound.lisp, 2017.

4. Hlöðver Sigurðsson. Emacslisp link to csound’s api via emacs modules. https:
//github.com/hlolli/csoundAPI_emacsLisp, 2017.

5. Stéphane Rollandin. Csound-x for emacs. http://www.zogotounga.net/comp/
csoundx.html, 2015.

6. John ffitch. Emacs-macros. http://www.cs.bath.ac.uk/pub/dream/utilities/
Emacs-macros/, 2003.

7. Artur Malabarbara et al:. aggressive-indent-mode. https://github.com/
Malabarba/aggressive-indent-mode, 2017.

https://github.com/csound/csound/blob/7b4cebf8cf0a3f49232123ee3d752db2116c4c6c/interfaces/sb-csound.lisp
https://github.com/csound/csound/blob/7b4cebf8cf0a3f49232123ee3d752db2116c4c6c/interfaces/sb-csound.lisp
https://github.com/csound/csound/blob/7b4cebf8cf0a3f49232123ee3d752db2116c4c6c/interfaces/sb-csound.lisp
https://github.com/hlolli/csoundAPI_emacsLisp
https://github.com/hlolli/csoundAPI_emacsLisp
http://www.zogotounga.net/comp/csoundx.html
http://www.zogotounga.net/comp/csoundx.html
http://www.cs.bath.ac.uk/pub/dream/utilities/Emacs-macros/
http://www.cs.bath.ac.uk/pub/dream/utilities/Emacs-macros/
https://github.com/Malabarba/aggressive-indent-mode
https://github.com/Malabarba/aggressive-indent-mode

	Interactive Csound coding with Emacs

