
Kairos - a Haskell Library for Live Coding
Csound Performances

Leonardo Foletto

Berklee College of Music
flttleonardo@gmail.com

Abstract. Kairos [1] is a library for the Haskell programming language
designed to live code patterns of Csound score instructions to be sent to
a running UDP server [2] of a pre prepared Csound orchestra.

Keywords: Live Coding, Csound, Haskell

1 Introduction

Within the context of the arts, live coding has seen an increasing adoption. To-
day, a growing community of artists who, already accustomed to using software
as a tool in their artistic practice, strive to find new methods to interact with
their machines in more personal and meaningful ways. In the past ten years,
many open source software tools have been developed to perform and compose
live coded music including SuperCollider[3], TidalCycles [4], Conductive[5], Sonic
Pi[6] .

Kairos is a live coding system inspired by some of the operational principles
of the above mentioned softwares, but born from the need of the author to create
an environment to perform and compose music more closer to his needs that feels
intuitive to use and provides a high degree of control with a simple, yet powerful
syntax.

2 System Overview

There are two main parts to the system: a Csound file, kairos.csd, and an
accompaning Haskell library. The focus of the project has been developing an
Haskell library to format patterns of data into Csound readable score to be sent
over a UDP network to a running instance of a Csound server.

2.1 Csound File

The file kairos.csd contains a number of pre defined instruments and global
effects. All the instruments have been programmed to have a positive finite value
of p3 and are written to maximize the number of common pfields amongst all
the instruments.

Pfields shared amongst every instrument



2 Leonardo Foletto

p4 : amplitude (0 - 1)

p5 : reverb send (0 - 1)

p6 : delay send (0 - 1)

p7 : panning (0 - 1)

Example of a simple sampler instrument

<CsInstruments>

instr 1 ;Sampler

inchs filenchnls p8

if inchs = 1 then

aLeft diskin2 p8, p9

outs aLeft*p4* sqrt(1-p7), aLeft*p4* sqrt(p7)

garvbL = garvbL + p5 * aLeft * sqrt(1-p7)

garvbR = garvbR + p5 * aLeft * sqrt(p7)

gadelL = gadelL + aLeft * p6 * sqrt(1-p7)

gadelR = gadelR + aLeft * p6 * sqrt(p7)

else

aLeft, aRight diskin2 p8, p9

outs aLeft*p4* sqrt(1-p7), aRight*p4* sqrt(p7)

garbL = garvbL + p5 * aLeft * sqrt(1-p7)

garvbR = garvbR + p5 * aRight * sqrt(p7)

gadelL = gadelL + aLeft * p6 * sqrt(1-p7)

gadelR = gadelR + aRight * p6 * sqrt(p7)

endif

endin

</CsInstruments>

Differently from the instruments, global effects are all built to run forever
(p3 = -1) and use channels to manipulate their parameters, instead of using
pfields.

Example of a reverb global effect

<CsInstruments>

;Reverb

garvbL, garvbR init 0

gkfbrev init 0.4

gkcfrev init 15000



Kairos 3

gkvolrev init 1

gkfbrev chnexport "fbrev", 1, 2, 0.4, 0, 0.99

gkcfrev chnexport "cfrev", 1, 2, 15000, 0, 20000

gkvolrev chnexport "volrev", 1, 2, 1, 0, 1

instr 550 ; ReverbSC

aoutL, aoutR reverbsc garvbL, garvbR, gkfbrev, gkcfrev

outs aoutL * gkvolrev , aoutR * gkvolrev

clear garvbL, garvbR

endin

</CsInstruments>

3 Haskell Library

3.1 Data Structures

The ensemble of instruments contained in kairos.csd gets triggered with in-
structions coming from the Kairos Haskell library. This is the part of the software
responsible for scheduling score events, sending them to Csound at the appro-
priate time and changing parameters of global effects.

All of the instruments and effects are represented in Haskell using the Instr

data type, which not only has information about the instrument number and
pfields of an instrument, but also about its status (active or inactive), the current
note to be played and the patterns of parameters for every pfield.

All of the instruments are collected in a data structure called Orchestra

that holds them and associates every instrument with a string that identifies it’s
name.

The two preceding instruments represented in Haskell with their Orchestra

sampler :: String -> IO Instr

sampler path = do

pfields <- newTVarIO $ M.fromList [(3,Pd 1),(4,Pd 1)

,(5,Pd 0),(6, Pd 0)

,(7,Pd 0.5),(8,Ps path)

,(9,Pd 1)] -- p8 : Sample path, p9 : pitch

emptyPat <- newTVarIO M.empty

return $ I { insN = 1

, pf = pfields

, toPlay = Nothing

, status = Stopped

, timeF = ""



4 Leonardo Foletto

, pats = emptyPat

}

reverb :: IO Instr

reverb = do

pfields <- newTVarIO $ M.fromList [(3,Pd (-1))]

emptyPat <- newTVarIO M.empty

return $ I { insN = 550

, pf = pfields

, toPlay = Nothing

, status = Stopped

, timeF = ""

, pats = emptyPat

}

defaultOrc :: IO Orchestra

defaultOrc = do

k <- sampler "/KairosSamples/kicks/Kick909.wav"

rev <- reverb

orc <- atomically $ newTVar $ M.fromList [("K909",k) ,("rev",rev)]

return $ orc

The Orchestra is held in a container named Performance that holds the
Orchestra and the informations about tempo, time signatures and rhythmic pat-
terns readily available to be used by the instruments.

The library is designed to be used within the GHCi [7] environment and can be
loaded and started running :script BootKairos.hs from within GHCi, launch-
ing it from the folder containing the script. This script also sets up a number
of convenient functions that help compose and modify patterns of instructions
easily.

3.2 Operational principles

To use the library, first start the Csound server running the file kairos.csd and
then launch an instance of GHCi and run the script BootKairos.hs. This script
will load the necessary modules of the library, run all of the necessary setup steps
to start a new Performance and also load many functions designed to reduce
the amount of typing necessary to perform and simplify the interaction with the
Csound orchestra.

To play an instance of an instrument a rhythmic pattern must be assigned
to it and then start the play loop.

Playing a four on the floor pattern with the kick instrument from before

Kairos> cPat "fourFloor" "K909" >> p "K909"



Kairos 5

Patterns of values can then be assigned to the exposed synthesis parameters
of the instrument. Every one of this pattern of values gets assigned an update
function that determine in which way the value for that parameter will be picked
for the next score event. The function can be picking a value from the list or
modify the list itself.

Changing the panning and volume parameters

Kairos> vol "K909" [Pd 1, Pd 0.8, Pd 0] randomize

Kairos> pan "K909" [Pd 0, Pd 1] nextVal

An alternative option is the params function, that allows to declare and
assign multiple parameters of pfields at the same time.

An example of the params function

Kairos> params "K909" [(keep, vol, [Pd 1]),(randomize, pan, toPfD [0, 1])]

4 Future Directions

The author uses the library in performances of live dance music and in a exper-
imental electronic band context in a setup with Eurorack modular synthesizers.

One of the features that will soon be introduced is the ability to have a shared
clock between multiple instances of Kairos to allow for ensemble performances.

On the musical side, the current focus of the research is on how to more
effectively generate and manipulate streams of pfields in interesting ways. The
author is now focusing on fractal-based models, Markov chains and autonomous
agents.

References

1. Kairos Github repository, https://github.com/Leofltt/Kairos
2. Csound UDP Server, https://csound.com/docs/manual/udpserver.html
3. SuperCollider https://supercollider.github.io/
4. McLean, A. and Wiggins, G.: Tidal - Pattern Language for the Live Coding of

Music. In: Proceedings of the 7th Sound and Music Computing conference (2010)
5. Bell, R.: An Interface for Realtime Music Using Interpreted Haskell (2011)
6. Sonic Pi https://sonic-pi.net/
7. GHC/GHCi HaskellWiki, https://wiki.haskell.org/GHC/GHCi

https://github.com/Leofltt/Kairos
https://csound.com/docs/manual/udpserver.html
https://supercollider.github.io/
https://sonic-pi.net/
https://wiki.haskell.org/GHC/GHCi

	Kairos - a Haskell Library for Live Coding Csound Performances
	Introduction
	System Overview
	Csound File

	Haskell Library
	Data Structures
	Operational principles

	Future Directions


