

The Hex System: a Csound-based Augmentation of
Hexaphonic Guitar Signal

Tobias Bercu,

 Berklee College of Music
tbercu@berklee.edu

Abstract. The impetus behind the Hex system was a desire to create
new guitar effects using Csound processing of hexaphonic guitar audio,
and to present these effects to the user in a format that allows playing
the instrument to meld with playing the effects. Processing one’s guitar
signal with a laptop or a desktop opens many doors, but can also be
cumbersome. The Hex system is meant to provide guitarists a smaller
and more liberated DSP apparatus that feels more like an augmentation
of the instrument itself than a separate module. The Hex system
processes audio via a Raspberry Pi running Csound. Using the Pi’s
onboard wifi, the system accepts control from TouchOSC, so that
parameters can be adjusted in real-time from a nearby smartphone. It
is intended for this smartphone to be attached to the guitar adjacent to
the pickup and tone controls. The Raspberry Pi and its audio hat are
housed in a small box, and this container is roofed by footswitches used
to engage and disengage effects.

Keywords: Csound, real-time guitar effects, DSP, hexaphonic,
Raspberry Pi

1 Introduction

The Hex system is a DSP prosthesis of sorts for guitar players, mainly intended
to process the 6-channel output of a hexaphonic guitar pickup. Its purpose is to
arm its user with a Csound-generated multi-effects suite comprising effects both
traditional and innovative. As a smartphone-controlled guitar pedal, it is meant
to present these DSP powers to the user as a natural extension of the
instrument to which the smartphone is attached.

2 Overview of Hardware and Software

2.1 Hardware

The basic hardware ingredients of the Hex system are a guitar, a hexaphonic
pickup, a splitter cable, a Raspberry Pi with an audio hat, a smartphone, and an
Arduino. For this build, a Graphtech Ghost hexaphonic pickup, a homemade
splitter cable, a Raspberry Pi 3 B+, an Audio Injector Octo Injector soundcard
from Flatmax Studios, a Samsung Galaxy S7, and an Arduino Mega were used,
respectfully. Figure 1 represents signal flow within the Hex system.

As most hexaphonic pickups send audio through a 13-pin cable, which
typically connects to a companion processing unit such as the Roland GR-55, it
was necessary to preempt the Octo Injector’s RCA female ADC inputs with a
splitter cable. The splitter cable feeds each of the six strings’ audio into its own
RCA head, and sends +9v, -9v, and a ground signal back to the hexaphonic
pickup using two 9v batteries wired in series.

The Arduino Mega (a standard Arduino Uno would suffice) monitors voltages
from eight on/off footswitches and sends their statuses to Csound via a USB
serial connection. The TouchOSC values sent via smartphone are used to
control the parameters of each effect. The Pi 3 B+ is used as a wifi source for
the transmission of the TouchOSC values.

2.2 Software

Each of the effects in HEX’s .csd is comprised of a single instrument or
combination of instruments that are inserted into and removed from the global
audio streams using the event_i and turnoff2 opcodes. An always-on control
instrument sends these on/off commands based on footswitch statuses received
from the Arduino via the Serialread opcode. An additional always-on control
instrument receives parameter values from a smartphone via TouchOSC and
assigns them to global k-rate variables.

This format was inspired by Iain McCurdy’s patch “MultiFX.csd”, with some of
the effects being copied verbatim. For now, they showcase the versatile nature
of the device. As one intention of creating this system has been to equip the
user with an arsenal of unique effects, these copied effects are partially
placeholders to be supplanted upon further optimization of the more
CPU-demanding effects that are still in development.

Table 1. Hex’s effects - made with Csound

Effect Description TouchOSC
Parameters

Arpeggiator Sequentially iterates notes
in a chord upon detection of
a transient

Trigger threshold
Tempo
Attack, Release
Octave mode

Hex-Wobble Rhythmic pitch bend Tempo
Magnitude

Pitch Shifter Uses the delay-line UDO Ratio
Feedback

Pitch-Tracking
Mono Synth

Uses pitchamdf analysis Note Duration
Waveform

Lofi Downsamples using fold
opcode

Fold amount

Filter Bandpass filter - stacked
Butterworth filters

Low cut
High Cut

Reverb Uses reverbsc opcode Size
Mix

Ringmod Uses poscil opcode Speed
Mix

2.3 Figures

Fig. 1. Hex’s components and the flow of audio and control signals..

3 Difficulties and Development

All Csound code for this project was originally written on a MacBook Pro using
CsoundQt, and a couple of unanticipated difficulties arose during the process of
porting the project to the Pi. There were two main issues to be reckoned with,
and dealing with them has given the author a few ideas about how to improve
the Hex system moving forward.

3.1 Intermittent Sound Card Detection

One challenging obstacle encountered during the build process was intermittent
sound card detection. The Audio Injector Octo sound card by Flatmax was the
only soundcard the author saw on the market with six channels of audio-rate
input, though others may exist. Though functional, the Octo was not always
detected by the Pi on boot. Other Octo users reported the same issue on the
Octo’s Github page and a script found there resets connection to the Octo 1

That script runs whenever Hex’s Pi boots up. One additional command was
added to the boot script to run Csound with the necessary RT audio module,
input and output device, and buffer size.

It turned out that Portaudio Callback was the only Octo-compatible RT Audio
Module; the others would either cause a crash or produce no sound or strange
noises.

This is a script called “fix.sh” registered in /home/pi/etc/rc.local to run at boot time.

#!/bin/bash

sudo modprobe -r snd_soc_audioinjector_octo_soundcard
sudo modprobe -r snd_soc_cs42xx8_i2c
sudo modprobe -r snd_soc_cs42xx8
sudo modprobe snd_soc_cs42xx8
sudo modprobe snd_soc_cs42xx8_i2c
sudo modprobe snd_soc_audioinjector_octo_soundcard

csound -+rtaudio=pa_cb -iadc0 -odac0 -B512 -b512 /home/pi/hex.csd

1 Audio Injector Octo Github support page, https://github.com/Audio-Injector/Octo/issues

https://github.com/Audio-Injector/Octo/issues

3.2 CPU Limit

Some of the effects originally envisioned and prototyped on the MacBook Pro
demand too much CPU to run stably on the Pi 3 B+. Further work is now
required if these effects are to be successfully integrated into the Hex system.

Table 2. Effects still in development.

Effect Description
Polyphonic Synth Uses pitchamdf opcode to

track pitch of each string on
which a transient is detected

Glissando Enging Uses pvsfreeze and pvscale
to freeze chords and slide
the frozen voices to notes in
the next detected chord

Live Granulator Granulates a short,
destructively-recorded buffer
of live input

Convolution
Engine

Performs real-time
convolution with pconvolve
and user-loaded IR

3.3 Development

Moving forward, the most seemingly cut and dry course of action is to switch to
a more powerful single board computer. The recently released Raspberry Pi 4
B may prove a timely supplicant. It boasts improved specs across the board
when compared to the 3 B+, including vastly improved RAM. The Pi 4 is
compatible with the Octo and the construction of a second Hex system based
around a Pi 4 is well underway here at Hex HQ at the time of writing.

The Asus Tinker Board is another affordable SBC that outperforms the Pi 3
B+ in some areas. Using a Github patch that was shared on the Audio Injector
Facebook page , and attempts were made to compile a debian kernel for the 2

Tinker Board that could support the Octo. The kernel runs and the card is
detected but does not produce sound as of yet.

4 Acknowledgements

Thanks to Dr. Richard Boulanger for sharing so much advice and guidance.
Thanks to Bill Bax for sharing his knowledge of breakout cables.

2Octo patch for Tinker Board, https://github.com/TinkerBoard/debian_kernel/pull/37

https://github.com/TinkerBoard/debian_kernel/pull/37

