
An opcode implementation of a finite difference
viscothermal time-domain model of a tube
resonator for wind instrument simulations

Alex Hofmann1, Sebastian Schmutzhard2, Montserrat Pàmies-Vilà1, Gökberk
Erdoğan3, and Vasileios Chatziioannou1 ?

1 Dept. of Music Acoustics, University of Music and Performing Arts Vienna, Austria
2 Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria

3 Dept. of Electrical & Electronics Engineering Boğaziçi University, Istanbul, Turkey
corresponding author: hofmann-alex@mdw.ac.at

Abstract. This paper presents an opcode for Csound, that is based on
a physical time-domain model of a closed-open tube resonator which is
capable of simulating wind instruments like clarinets or saxophones. The
tube model hereby considers sound radiation parameters as well as vis-
cothermal losses that occur inside the tube. The model was implemented
in C++ using the Csound Plugin Opcode Framework. The resontube op-
code allows users to provide complex geometries for the model construc-
tion in k-time together with arguments for sound radiation and pick-up
position. The opcode is published together with its source code as a git
repository including documentation and examples.

Keywords: csound, opcode, physical model, resonator, tube

1 Introduction

Physical modelling-based sound synthesis is an estabilished technique in the field
of computer music [11] and is well supported by a large number of opcodes in
Csound [7]. A majority of physical models available for Csound are based on the
digital waveguide method4 (e.g. opcodes wgclar, wgflute, wgbow and opcodes
from the Synthesis Toolkit (STK) by Cook and Scavone [4,9]).

Digital waveguides are computationally efficient algorithms that use simple
delay lines to model a wave travelling in space. When the wave hits a boundary it
is reflected. Depending on the boundary condition the sound wave is damped and
may change its phase. In digital waveguides, boundary conditions are modelled
by inserting filters into the delay line that mimic the effect of the respective
boundary. The abstraction of the complex physical phenomena that happen with

? This research was supported by the Austrian Science Fund (FWF) P28655-N32
and the“mdw Call fuer Artistic Research Projekte” by the University of Music and
Performing Arts Vienna. The authors like to thank Rory Walsh and Steven Yi for
their support via the Csound Slack Chat.

4 http://www.csounds.com/manual/html/SiggenWavguide.html



2 Hofmann et al.

musical instruments as simple delay+filter algorithms allows for computationally
efficient code that can easily run in real-time on consumer computers. However,
this may restrict the model complexity and the quality of the sound [6].

The general approach to physical modelling directly considers the differential
equations that describe the oscillating system. These can be solved numerically,
using a variety of methods [12]. The prevalent approach in the last decades is
to discretise the model equations using the finite difference method [2,1]. This
approach might require a large number of computations but is capable of pro-
ducing more realistic sounds. As of our knowledge, there are currently only three
opcodes in Csound that make use of finite differences for physical modelling of
musical instruments, namely barmodel (model of a metal bar), prepiano (model
of a prepared piano string), and platerev (model of a resonating two dimen-
sional rectangular plate).

This paper presents a new opcode to extend Csound by a mathematical time-
domain wave propagation model for a closed-open tube resonator that takes
viscothermal losses into account and allows for a varying cross-sectional area, as
found in wind instruments such as clarinets or saxophones [10].

2 Tube Resonator Model
This section gives a short summary of the physical tube resonator model that is
the basis for the new opcode. A detailed description, including a validation of
this model can be found in [10].

A tube of length L is considered, with a cross-sectional area S(x), 0 ≤ x ≤ L.
The time-domain model for the dynamics of the pressure p and the particle
velocity v is given by

∂xp+ ρ∂tv + zv ∗ v = 0, ∂x(Sv) +
S

ρc2
∂tp+ Syθ ∗ p = 0, (1)

where * denotes a convolution with respect to time, and the functions zv and yθ
are the time domain versions of the series impedance Z and shunt addmitance
Y . The boundary conditions are given by v(t, 0) = vin(t) at x = 0 and for x = L

p(t, L) = S(L)zr ∗ v(t, L), (2)

where zr is a stipulated radiation impedance. The convolutions zv ∗ v and yθ ∗ p
are related to the viscothermal losses along the tube. For the computational
algorithm used in this opcode, we replace equation (1) by the approximation

∂xp+ ρ∂tv +R0v +

K∑
k=1

wk = 0, ∂x(Sv) +
S

ρc2
∂tp+ S

K∑
k=1

qk = 0, (3a)

where wk(t) = Rk

t∫
0

e−Lk(t−τ)∂tv(τ)dτ, k = 1, . . . ,K (3b)

and qk(t) = Gk

t∫
0

e−Ck(t−τ)∂tp(τ)dτ, k = 1, . . . ,K. (3c)



Tube Resonator Opcode 3

Techniques for the computation of the coefficients Rk, Lk, Gk and Ck are
discussed in [10,3]. We set K = 4, since we observed that taking K larger than
four does not audibly change the result. The boundary condition is approximated
by

S(L)Rr∂tv(t, L) = Lrp(t, L) + ∂tp(t, L), (4)

for certain coefficients Rr and Lr, see [2]. Using finite differences to approximate
the derivatives, we compute approximations pnm, vnm, wnk,m and qnk,m to the so-
lutions p, v w and q of (3), respectively, at discrete points (tn, xm) in time and
space, where tn = n∆t, n = 0, 1, 2 . . . and xm = m∆x for m = 0, . . . ,M and
L = M∆x, for fixed ∆t and ∆x. pn+1

m and vn+1
m are iteratively computed from

results obtained at previous time steps. The derivation of the finite difference
scheme is given in [10]. The boundary condition on the left gives for vn+1

0

vn+1
0 = vn+1

in . (5)

Equation (3a) is discretised by finite differences. We compute vn+1
m ,m = 1, . . . ,M

from
pnm − pnm−1

∆x
+ ρ

vn+1
m − vnm
∆t

+R0,mv
n+1
m +

K∑
k=1

[
e−Lk,m∆twnk,m +Rk,m(vn+1

m − vnm)e−Lk,m
∆t

2

]
= 0.

(6)

and pn+1
m , m = 0, . . . ,M − 1 from

Sm+1v
n+1
m+1 − Smvn+1

m

∆x
+
Sm
ρc2

pn+1
m − pnm
∆t

+

Sm

K∑
k=1

[
e−Ck,m∆tqnk,m +Gk,m(pn+1

m − pnm)e−Ck,m
∆t

2

]
= 0.

(7)

Taking finite differences in (4) yields for m = M

SMRr
vn+1
M − vnM
∆t

= Lrp
n+1
M +

pn+1
M − pnM
∆t

, (8)

from which pn+1
M can be computed. Finally for k = 1, . . . ,K and m = 1, . . . ,M ,

wn+1
k,m and qn+1

k,m are updated by

wn+1
k,m = e−Lk,m∆twnk,m +Rk,m(vn+1

m − vnm)e−Lk,m
∆t

2 , (9)

and

qn+1
k,m = e−Ck,m∆tqnk,m +Gk,m(pn+1

m − pnm)e−Ck,m
∆t

2 . (10)



4 Hofmann et al.

3 Opcode Implementation

The tube model is implemented in C++ following the Csound Plugin Opcode
Framework [6]. All code is made available as a public git repository 5

The implementation of the resontube opcode, a tube resonator with vis-
cothermal losses as described in Section 2, can be found in the file resonators/

resontube.cpp. A library of functions is given in src/tube.cpp and constants
are in src/const.cpp. Following, we give an overview of the implementation of
the model as an opcode for Csound.

Initialisation: When the opcode is loaded (init()), an equispaced grid in the
longitudinal direction of the tube with M grid points is instantiated. Based on
the user given geometry, the cross sectional area S is calculated for each grid
point (see Figure 1). The grid consists of five csound arrays (csnd::AuxMem<MYFLT>)
in which the status of the tube is processed. The size of the arrays is initially
allocated for Mmax=400 (src/const.cpp) so that no additional memory needs
to be allocated during runtime, even when the user is changing the length of the
tube. The five main arrays are vnew for the particle velocity (vn+1

m ,m = 1, . . . ,M
from eq.6), pnew for the air pressure (pn+1

m from eq. 7), S for cross sectional
area at each grid point (Sm), and qloss and wloss for the viscothermal loss
related variables (wn+1

k,m and qn+1
k,m given in eq. 9 & 10). AuxMem iterators (e.g.

csnd::AuxMem<MYFLT>::iterator iter pnew) are created for each array. Com-
putations on the arrays are only done within the range m = 0, . . . ,M . As a two-
point scheme in time is used, the algorithm requires a memory of the previous
tube state. Therefore, a copy of all grid values needs to be preserved in additional
arrays (pold, vold, qlossold, wlossold) with the respective iterators.

In this model, two types of losses are calculated. A) radiation losses (rad_alphaS)
at the end of the tube where the sound is radiated out of the tube, depend-
ing on the cross sectional area at the last grid point as given in eq.(4). B)
viscothermal losses that apply at each grid point along the virtual tube are
calculated. Factors for the convolutions in eq.(1) are prepared in the function
compute_loss_arrays().

Runtime: During runtime (aperf()), it is checked if any of the k-rate input
arguments (length, geometry, see Section 4 for details) were changed by the user.
If this happens, the grid has to be re-computed. This involves calculating the
required number of grid points (M < Mmax), the spacing of the grid points
(dx), the cross sectional area (S) at each grid point (x), as well as the losses. To
maintain the wave inside the tube (pressure, velocity, losses), all new grid arrays
are updated with interpolated values taken from the preserved grid arrays.

5 https://github.com/ketchupok/half-physler/tree/visco_pointers. Currently,
the repository holds three slightly different opcodes. Two are tube resonators with-
out viscothermal losses, used in a different project [5], where halfphysler bela is
specifically optimised to run on the ultra-low latency embedded computing platform
Bela [8].

https://github.com/ketchupok/half-physler/tree/visco_pointers


Tube Resonator Opcode 5

In the audio-loop (for (auto & o sound : out sound) {...}), the wave
propagation in the tube is computed for each time step (sample), and the audio
I/Os are assigned. An input signal is given to the model as a particle velocity
to the closed end of the tube (vnew[0] = in;). Two different audio outputs
are assigned. Out_Feedback returns the pressure at the beginning of the tube
(pnew[0]) prior to computing the next time step, whereas o_sound is returning
the pressure at a variable grid point pnew[x], x < M after the update func-
tion update_visco()6. The function update_visco() updates the pressure and
velocity properties according to equations (6) and (7). Update_losses() is up-
dating the loss arrays following equations (9) and (10). Finally the status of the
grid is copied to pold & vold to be preserved for the next call of aperf().

Fig. 1. Schematic of the tube model with a closed end at the left side and an open end
at the right side. Geometry is given in segments as Csound arrays. Here an example
with four segments from which the cross-sectional area (S) is computed for each grid
point.

4 Usage

The resontube opcode implements a tube resonator with one closed and one
open end, similar to the resonator of a clarinet or a saxophone. An overview
of all user parameters of the opcode including a description of the underlying
physical parameters is given in Table 1. In Csound the opcode is called by:

aFeedb, aSnd resontube aVelocity, kLen, kSegLengths[], kRadiiIn[],

kRadiiOut[], kCurveType[], [kEndReflect,

kDensity, kPickPos, kComputeVisco]

The resonator is driven by an input particle velocity (aVelocity), a param-
eter that describes the speed of the air entering the tube, for example via a
single-reed instrument mouthpiece. The second input parameter kLen was intro-
duced, to allow to change the resonance frequency of the resonator in a woodwind

6 To save CPU, computation of all viscothermal losses can be turned off
(computeVisco=0), and respectively the function update_vp() is called



6 Hofmann et al.

instrument-like style. A given kLen in meters cuts the resonator at this point,
similar to the function of opening toneholes at acoustic woodwind instruments.

The initial geometry of the entire resonator is given in segments via the
Csound arrays kSegLengths[], kRadiiIn[], kRadiiOut[], kCurveType[]. Each
segment is defined by its length, input radius, output radius and an interpola-
tion curve type. We allow up to 25 segments. The example below gives a good
approximation of a Bb-flat clarinet geometry using only 4 segments.

kSegLengths[] fillarray 0.0316, 0.051, .3, 0.02

kRadiiIn[] fillarray 0.0055, 0.00635, 0.0075, 0.0075

kRadiiOut[] fillarray 0.0055, 0.0075, 0.0075, 0.0275

kCurveType[] fillarray 1, 1, 1, 2

Additional parameters to shape the sound by modifying the end reflection, the
air density and the pick-up position along the tube are provided as k-rate inputs.
An option to switch between the computation of viscothermal losses or not was
added, which allows real-time playback also for complex geometries and long
resonators on consumer PCs or embedded platforms like Bela [8].

5 Discussion

The presented opcode extends Csound by a finite difference model of a tube
resonator, similar to resonators we find in clarinets or saxophones. Publishing
the model for Csound allows live-electronic performers, composers or instrument
makers to explore numerical modelling in an environment that handles I/O man-
agement and allows to combine physical modelling with other signal processing
opcodes. Exciting experiments are possible when using Csound’s capability of
creating an internal feedback (ksmps=1), as shown in one of the online examples.
A future version of the opcode could involve an extension to an open-open tube
(flute) resonator, as well as adding details like tonehole geometry or register key
modeling.

References

1. S. Bilbao. Direct simulation of reed wind instruments. Computer Music Journal,
33(4):43–55, 2009.

2. S. Bilbao. Numerical sound synthesis. John Wiley & Sons, 2009.
3. S. Bilbao and R. Harrison. Passive time-domain numerical models of viscothermal

wave propagation in acoustic tubes of variable cross section. JASA, 140(1):728–
740, 2016.

4. P. Cook. Real Sound Synthesis for Interactive Applications. AK Peters, 2002.
5. A. Hofmann, V. Chatziioannou, S. Schmutzhard, G. Erdoğan, and A. Mayer. The

half-physler. In Proc. NIME 2019, page (accepted), Porto Allegre, BR, 2019.
6. V. Lazzarini. The csound plugin opcode framework. In SMC, pages 267–274, 2017.
7. V. Lazzarini, S. Yi, J. ffitch, J. Heintz, Ø. Brandtsegg, and I. McCurdy. Physical

Models, pages 385–405. Springer International Publishing, Cham, 2016.



Tube Resonator Opcode 7

8. A. McPherson, R. Jack, and G. Moro. Action-sound latency: Are our tools fast
enough? In Proc. NIME, volume 16, pages 20–25, Brisbane, Australia, 2016.

9. G. P. Scavone and J. O. Smith. A stable acoustic impedance model of the clarinet
using digital waveguides. In Proc. DAFx–06, pages 89–94, 2006.

10. S. Schmutzhard, V. Chatziioannou, and A. Hofmann. Parameter optimisation of
a viscothermal time-domain model for wind instruments. In Proc. ISMA, pages
27–30, 2017.

11. J. Smith. Viewpoints on the history of digital synthesis. In Proc. ICMC, pages
1–10, 1991.

12. V. Välimäki, J. Pakarinen, C. Erkut, and M. Karjalainen. Discrete-time modelling
of musical instruments. Reports on Progress in Physics, 69(1):1–78, 2006.

Table 1. User parameters for the closed-open tube model.

Variable type Parameter Range Functionality

aVelocity a-rate v Input particle velocity (m/s)

kLen k-rate L 0.01–3 m (with sr
= 44100)

length of the tube

kSegLengths[] k-rate Lpart

∑
=< 3 m length of each segment,

given as Csound array

kRadiiIn[] k-rate rpart-in 0.0075–0.0095 m
(= 7.5–9.5 mm)

radius at the beginning
of each segment, given as
Csound array

kRadiiOut[] k-rate rpart-out 0.0075–0.0095 m
(= 7.5–9.5 mm)

end-radius of segment, given
as Csound array

kCurveType[] k-rate 1)=linear,
2)=parabolic,
3)=exponential

interpolation mode for com-
putation of S, given as
Csound array

kEndReflection k-rate α 0.1–4.0 multiplier for end reflection
coefficient (radiation resis-
tance)

kDensity k-rate β 0.1–30.0 multiplier for air density

kPickPos k-rate m 0.0–1.0 scaled pickup position along
the tube

kComputeVisco k-rate 0 / 1 turn On/Off the computa-
tion of viscothermal losses


	An opcode implementation of a finite difference viscothermal time-domain model of a tube resonator for wind instrument simulations
	Introduction
	Tube Resonator Model
	Opcode Implementation
	Initialisation:
	Runtime:


	Usage
	Discussion


