
A Musical Score for Csound with Abjad    1

A Musical Score for Csound with Abjad

 Gianni Della Vittoria, 

 Liceo Musicale “Canova” di Forlì 
   

giannidellavittoria.audio@gmail.com

Abstract. This paper presents the advantages of using a traditional musical
score to make music with Csound. After illustrating some alternative approach-
es, examines Abjad, a Python library for printing music through Lilypond, and
explains the technique for linking Abjad to Csound. Since in order to compose
a musical score of synthesizers it is necessary to manage complex envelopes,
particular attention is paid to how to represent the envelope profiles of the vari-
ous parameters on a score and how to interpret them in Csound. As the system
is open to several possibilities, the choice is proposed that seems simpler and
allows the user to see the envelope as a musical element to be set on a staff,
providing a better overview of the whole composition.

Keywords: Score, Abjad, Python, Algorithmic composition, Lilypond

1 Introduction

When writing music in Csound, the issue of realizing the score, as it is well known, can
be solved in a vastness of ways. There is a variety of approaches ranging from direct
compilation of the score to the use of third-party software. Each of them has its own pe-
culiarities that can best fit the sometimes opposite preferences of those preparing to
compose music with Csound.

One of the necessities that arise during the creation of an average complex score is to
organize musical events at multiple levels, and not as a simple succession of instances.
Today this is certainly possible with the sole use of Csound, without having to resort to
external tools. One typical arrangement, in this sense, is to write the score to instantiate
instruments which in turn call other instruments according to a specific algorithmic
plan. The score, thus, hosts not so much the "notes", but the musical "phrase". By ex-
tending the principle, the orchestra can organize calls at multiple levels, leaving the
score the task to coordinate the highest level.

There are also a whole series of external programs that deal with the problem of man-
aging music organization levels in very interesting ways, such as Blue by Steven Yi, a
rich environment where it is possible to view series of events arranged on a temporal
plan with the chance of nested levels, or athenaCL by Christopher Ariza, which instead
uses a command line approach to determine series of events according to well-defined
parameter masks with many categories of envelopes.

It is useful to be able to represent the complexity of musical thought in some way, so
as to be able to observe its unraveling over time. In this article I am going to present an -



2     Gianni Della Vittoria

other way to organize and visualize the Csound score, that is, through a traditional musi-
cal score adapted to Csound's needs.

2 Preparing a Musical Score for Csound

Instantiating Csound with a musical score has been done in various ways. One of them
is via MIDI: you create a score with score editing software like MuseScore, extract the
MIDI version and import it into Csound. This mode has various appreciable aspects,
such as the ease with which Csound can be played by connecting each instrument of the
musical score to the desired sound. However, it is not so easy to integrate a mechanism
for transferring the parameter envelopes. How to describe them in a musical score? And
solved this, how to be able to transfer them in real time to Csound, given that Csound
should know in advance where the envelope will end up for at least the duration of the
entire note?

Another way is by using visual programming software such as Open Music or
PWGL. Open Music, for example, has several libraries specifically built to communi-
cate with Csound, but, alongside the wealth of algorithms for processing various musi-
cal parameters, there are constraints such as the difficulty of managing dynamic mark-
ings or other musical symbols.

2.1 Lilypond and Abjad

To get a traditional musical score full of details, Lilypond is certainly an excellent
choice. This software requires ASCII text notation, which is then compiled into docu-
ments such as PDF, PostScript, SVG of acknowledged quality. While remaining faithful
to its textual nature, Lilypond has seen the contribution of various external GUI pro-
grams to facilitate the introduction of musical content (Frescobaldi, Denemo,
Canorus, ...). Furthermore, there are many programming languages that use Lilypond to
visualize algorithmic music. Among them Abjad stands out, an extensive Python library
that allows the user to work with various Lilypond elements implemented in a sophisti-
cated class structure. The advantage of Abjad lies in the fact that the algorithmic com-
position becomes simpler than if you were to create a pure Lilypond text file, being
practically every element manageable with simple class instances.
   Given the richness and the ability to produce very complex graphics, Abjad and Lily-
pond are particularly suitable for the composition of contemporary music; hence the
idea of using these tools in conjunction with Csound.

2.2 From Abjad to Csound

Various ways can be used to connect Abjad to Csound. Here the python ctcsound mod-
ule is taken into account: it allows you to compile csound through a variable containing
the .orc and .sco text.
To show a short example, let's consider a simple orchestra with this beginning of
Csound score 



A Musical Score for Csound with Abjad    3

sco_text = ['''
f1 0 8192 10 1 .1 .01 .02 .03 0 0 .01 0 .02 .01 0 .02
;      amp midi attack decay pan
i1 0 1 0.5 60   0.01   0.1   0.5
''']

After creating the musical score in Abjad, in which each instr has a dedicated staff like
in a traditional orchestral score, it is necessary to extract the onset, duration and pitch
information relying on the abjad parser, so that it selects the events iteratively, avoiding
rests. The iteration must take place over logical_ties, so as to consider tied notes as indi-
vidual units.

for logical_tie in 
abj.iterate(score).logical_ties(pitched=True):
offset = abj.inspect(logical_tie).timespan().start_offset
offset_seconds = 60*offset/(metronome_mark.reference_du-

ration * metronome_mark.units_per_minute)
dur = abj.inspect(logical_tie).duration()
dur_seconds = 60 * dur / 

(metronome_mark.reference_duration * 
metronome_mark.units_per_minute)
scoLine = ['\ni1 ', str(offset_seconds.__float__()), 
str(dur_seconds.__float__()), '.5']
scoLine.append(str(60 + abj.NumberedPitch(logical_tie[0])))

The onset times (p2) are taken from the Abjad inspector through the
timespan().start_offset method, which returns the value in musical figures of duration.
The following line makes the conversion in seconds, taking into account the
metronome. The same procedure is applied to the duration, while the frequency is
drawn from from the NumberedPitch class of Abjad, which is 0 for middle C, 1 for C#,
2 for D and so on. By adding 60 they can be easily intercepted by Csound through the
cpsmidinn opcode.

Finally, the other p-fields are added, which obviously could be freely processed in
python or derived from the abjad score. After calling csound through ctcsound, what
you get is real-time listening and visualization of the score.

2.3 Microtonal tuning

The representation of micro-intonation on a musical score always raises questions that
force us to take sides. The choice of the best notation system depends on the composi-
tional needs and can be quite different from one piece to another. 
   Fortunately, the flexibility of Abjad provides the freedom of choice you prefer. A fair-
ly general approach could be the quarter-tone notation, which is easily readable, with
deviations expressed in cents by a small number before the note. This number would
therefore range from +25 to -25 and can be float for fractions of a cent.



4     Gianni Della Vittoria

   Once paired with the Note class, all the python code has to do is parse and convert this
value to a decimal midi note: Csound will take care of the rest (the cpsmidinn opcode is
able to correctly evaluate decimals).

3 Graphical representation of envelopes

Just as in an instrumental musical score it is important to show every detail relating to
the execution of each instrument, to put together a score of synthesizers it is useful to
define the dynamic developments of the various parameters by displaying the envelopes
of the most significant parameters. Defining them only in Csound would require a con-
stant reuse of envelopes with the same number of p-fields, and in any case the fact re-
mains that they cannot be displayed. Not even the Open Music maquette comes to the
punctual clarity that only a musical score can allow. Defining the envelopes in Abjad,
on the other hand, allows them to be diversified for each event and to show them all in a
clear overview.

Also for this there can be various approaches. For example, we could use traditional
dynamic markings, such as pp, mf, crescendo, associating them with certain amplitude
patterns. Alongside the undoubted advantage of easy readability, however, there is the
downside of a reduced number of nuances, compared to the possibilities of a synthesiz-
er. However it would not be bad to employ them in conjunction with other systems.

Another way would be to imitate the envelope profiles of the most popular synthesiz-
er graphics, technically feasible thanks to the powerful PostScript language that Lily-
pond introduced. Here, however, the problem would consist in deciding how to get to
the Csound transcription, which can be solved in various ways, but perhaps a bit cum-
bersome. For example, PostScript uses elegant cubic Bezier curves that could be con-
verted to Csound, but Csound for now only has the quadratic Beziers (GEN "quadbezi-
er") and these do not have the same flexibility as cubic ones.

3.1 Envelopes on musical staves

Perhaps the fastest method to represent complex and articulated envelopes is to use nor-
mal additional staves where for each parameter the profiles will be drawn through
pitched notes. Handling notes and durations is the most natural thing in Abjad and this
would allow for easy algorithmic manipulations. Moreover, it can be interesting to have
an approach of proportional durations definable with rhythmic figures, where more mu-
sical parameters of the same instrument can be easily compared and played with subtle
synchronizations.
   Here we will give an example with a single instrument (FM1) and a single parameter
(the IndFM1 modulation index) for the sake of clarity. Let's start with the orchestra
loaded in ctcsound.
orc_text = '''

sr     = 48000
ksmps  = 8
nchnls = 2



A Musical Score for Csound with Abjad    5

0dbfs  = 1

instr FM
 kamp = .3
 kcps = cpsmidinn(p5)
 kcar = 1
 kmod = .6
 kndx table p4,100; read from Abjad staff “IndFM”
 asig foscili kamp, kcps, kcar, kmod, kndx, 1
 outs asig, asig
endin

instr lin
 kval linseg p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16, 

p17,p18,p19,p20,p21,p22,p23,p24,p25
 tablew kval, p4, 100
endin
'''

We want to infer the vertices of the envelope for a linseg to handle the modulation index
of the FM from the notes on a specific staff. We establish that the range goes from 0

(middle C) to 20 (C 2 octaves above). Since we do not know a priori how many vertices
the parameter IndFM1 will have for each FM1 instance, we have created an instr "lin"

with a very long p-fielded linseg. If less p-fields are used, Csound actually warns, but
does not protest and this allows us the flexibility to create very different profiles in the

score. This is the starting score.

sco_text = ['''
f 1 0 16384 10 1 ;sine
f 100 0 2048 -2 0 ;only for envelopes
;How score should look like
;            channel midinote
;i "FM" 0 5  0       69
;            ch linseg_values(no fixed number of pfields)
;i "lin" 0 5 0  1 2.5 20 2.5 1
''']

As you can see from the commented part, each "FM" is activated simultaneously
with its "lin" instr and linked by a unique channel so that while "lin" writes, "FM" reads
the k data. For each new instance of "FM" the reading channel is updated, provided by
ftable 100, so that there is never any interference between any overlapping instances.

The conversion from musical score to Csound happens as follows

channel = 0
instrument_list = ['FM1']
for instrument in instrument_list:
  for logical_tie in abj.iterate(score[instrument]).logi-
cal_ties(pitched=True):



6     Gianni Della Vittoria

  offset = abj.inspect(logical_tie).timespan().start_off-
set
  offset_seconds = 60*offset/

(metronome_mark.reference_duration * 
metronome_mark.units_per_minute)
  dur = abj.inspect(logical_tie).duration()
  dur_seconds = 60 * dur / (metronome_mark.reference_du-

ration * metronome_mark.units_per_minute)
  scoLine = ['\n','i 

"FM"',str(offset_seconds.__float__()), 
str(dur_seconds.__float__()), str(channel)]
  sco_text.extend(scoLine)
  sco_text.append(str(60 + 

abj.NumberedPitch(logical_tie[0])))
    #Envelope for IndFM
  sco_text.extend(['\n','i "lin"', 

str(offset_seconds.__float__()), 
str(dur_seconds.__float__()), str(channel)])
  for segment in 

abj.iterate(score['IndFM1']).logical_ties(pitched=True):
    segmentStart = 

abj.inspect(segment[0]).timespan().start_offset
    if offset <= segmentStart < (offset+dur):
      value = abj.NumberedPitch(segment[0]).__float__() /

24 # scaled 0 -> 1 between c' c'''
      segmentDur = abj.inspect(segment).duration()
      segmentDur_seconds = 60 * segmentDur / 

(metronome_mark.reference_duration * 
metronome_mark.units_per_minute)
      scaledValue = value * 20  # scale relative to the 

particular parameter
      sco_text.extend([str(scaledValue), 

str(segmentDur_seconds.__float__())])
  sco_text.append(str(scaledValue))# last value repeated

  channel += 1
sco_text = ' '.join(sco_text)

As can be seen, the conversions are quite similar to those shown above, but this time the

iteration that inspects the notes-vertices of the IndFM parameter is filtered by the time
window corresponding to the duration of the relative FM1 note. Finally, the rescaling

operated on 24 semitones is spread over a range from 0 to 20. 

Notes and final image.

IndFM1staff = abj.Staff("c'4 c'''32 a'8.. a''4. b'8 e'16
g'' b' e'' e'4 c'''32 c''8.. fs'8. c'''16 ", name='IndFM1')
FM1staff = abj.Staff("c'1 cs'2 b'4~ b'4 ", name='FM1')

 



A Musical Score for Csound with Abjad    7

IndFM envelope

 FM1 base frequency

References

1. Lazzarini, V. et al.: Csound: A Sound and Music Computing System. Springer (2016)
2. Lazzarini, V.: Computer Music Instruments. Springer (2017)
3. Baca L., Oberholtzer J. W., Trevino J., Adan V.: “Abjad: An Open-Source Software System for

Formalized Score Control” in Proceedings of the International Conference of Technologies for
Music Notation and Representation, 2015

4. Oberholtzer J. W.: A Computational Model of Music Composition. Doctoral dissertation, Har-
vard University, 2015

5. Trevino, J. R.: Compositional and Analytic Applications of Automated Music Notation via Ob-
ject-oriented Programming. Doctoral dissertation, University of California, 2013


	2.1 Lilypond and Abjad
	2.2 From Abjad to Csound
	2.3 Microtonal tuning
	3.1 Envelopes on musical staves

