
MIUP Portable User Interface for Music
Example of jo tracker - a tracker interface for Csound

Johann PHILIPPE?

No Institute Given

Abstract. This article presents graphical tools designed to work with
Csound. First section introduces the context in which those tools were
built. Then, second part presents MIUP, an open source graphical library
designed to build audio softwares. Finally, last part describes jo tracker,
a tracker software for Csound built with MIUP.

Keywords: MIUP, IUP, jo tracker, Csound, User Interface, Lua, C++

1 Introduction

In it’s relatively recent relashionship with softwares and computing tools, con-
temporary music has been experiencing many difficulties inherent to preservation
of tools. This is particularly true for mixt and electroacoustic music, which, at
the same time, benefits a lot of those technologies. However, it is harder today
to play a music from the last thirty years than to play some complex musics
from the early 20th century. Most of the time, this difficulty appears when the
electronic part of a music is based on an old program that is no longer working,
or an old Max MSP patcher. In this kind of cases, it is almost an archeological
work to find how was supposed to work this old software, and it becomes longer
to update this program than it was to first create. As it is an important preser-
vation problem, it must be a concern for composers who uses this technologies.
Csound likely stands as the best alternative to this preoccupations, for many
reasons. First, Csound is open-source, so a program could be reconstructed from
scratch. Also, Csound developpers take care of retro-compatibility, which allows
an old program to be played on a recent distribution. Moreover, Csound has an
important community sharing knowledge about sound and music computing. It
is why tools presented in this article are mostly designed to work with Csound,
yet it could work with other audio programming languages.

2 MIUP - a C++ user interface library for music

MIUP stands as portable user interface for music. This is a cross platform
toolkit designed to easily write musical softwares using Csound. It uses IUP
[1], a cross platform C library working with system native interface elements. It

? Thanks to François Roux.



2 AuthorA and AuthorB (or AuthorA et al. if too long)

is fully distributed as source code under MIT license (except a modified version
of CsoundThreaded). MIUP has a few dependencies : all of them are licensed
under MIT. Some of them are included as source code inside the project repos-
itory. Though, a few ones need to be linked to the program in order to work
: the IUP library (all of it, including canvas draw and im), sqlite3, sndfile. Of
course, Csound needs to be linked to the program if it is used as the applica-
tion’s audio engine. MIUP project contains a set of C++ class which describes
useful tools for musical softwares : sliders, levelmeters, spinboxes (...), but also
more complex class like a curve editor, a waveform visualization plot, a code
editor for Csound... MIUP provides a connection mechanism that can be used
to fire callbacks between several objects. It also provides a callback system to
retrieve Csound output channels and display their values inside the interface.
MIUP allows user to take full benefit from Csound with a flexible user interface.
It allows user to write its own widgets, following a simple design diagram. This
library was first written in Lua as a toolkit to write a particular software : the
jo tracker. It has been fully rewritten in C++ to extend its potential to other
softwares.

2.1 MIUP basic functionnalities

IUP C library provides one data type that is used for every interface element :

Ihandle *

The interface element can be initialized like this :

Ihandle *IupButton(const char *action)

It also provides a set of functions that can be used to modify attributes of
interface elements.

void IupSetAttribute(Ihandle *element, const char *name, const char *value)

const char * IupGetAttribute(Ihandle *element, const char *name)

Since every IUP element is of type Ihandle *, users can easily construct some
complex interface architecture, imbricating boxes (layouts) inside other boxes.
MIUP base class MiupObj is a simple C++ wrapper to this C mechanism. It
is recommanded that every MIUP interface element inherits from this class.
The class contains a private Ihandle * that holds a reference to the interface
element, and implements some public methods to modify attributes of the object
:

void setAttr(const char *name, const char *value)

const char *getAttr(const char *name)

Ihandle *getObj()

Every MIUP widget inherits from this base class called MiupObj, and con-
structs the interface element with a different IUP initializer function. The getObj()



Running Title 3

method returns the Ihandle * pointer. It is a necessary method for every inter-
face element, and it allows a compatibility with the standard IUP syntax. The
Ihandle * element returned by the getObj() method will be the one displayed
in the interface.

2.2 Main Features

Here is a quick list of the available widgets and classes :
-Widgets : button, toggle, sliders, levelmeter, gainmeter, spinbox, matrix
-Plots : curve editor, waveform visualizer (realtime and soundfile)
-Containers : boxes (vertical, horizontal, scrollable), radio...
-Audio : Threaded callbacks, AudioFileReader, CsoundThreaded (slightly mod-
ified)
-Text : Text widget (one line, or multiline), Scintilla editor
-Utilities : filesystem, string conversion, templated print facilities, some data
types, signaled value...
It also contains a set of features, including JSON [5], Signal and Slot [4] used
to connect objects, and a thread safe callback mechanism for Csound control
channels.

2.3 Code Examples

Any MIUP program must contain at least a call to Miup::Init() at the begin-
ing, and Miup::MainLoop(), Miup::Close() at the end. Creating a widget can
be as simple as :

Slider<double> sl(-90,-90,6,0.01,"HORIZONTAL");

LevelMeter<double> lv(-90,-90,6);

Button but("PLAY"); // creates a button displaying "PLAY"

Widgets can be pushed inside containers like this Vbox vbx(&sl,&lv,&but);.Then,
the final container must be pushed in a new dialog.

Dialog dlg(&vbx);

dlg.show();

When their internal callback is triggered (like button click), Widgets emits sig-
nals that can be connected to any function or method with the same signature.
For example, we could do :

sl.valueChangedSig.connect(&lv,&LevelMeter<double>::setLevelMeter);

This would update level meter value to slider value. If the signature is different,
the connect method can also be called with a lambda as argument. It allows to
connect one signal to multiple actions in one statement.

CsoundThreaded cs;

sl.valueChangedSig.connect([&cs](double val){cs.setChannel("gain",val);});



4 AuthorA and AuthorB (or AuthorA et al. if too long)

This would send the slider value to Csound as a control channel when it changes.
Interface can also be refreshed with Csound control output control channels. This
functionnality works by passing a std::function as argument to CsoundThreaded
pushMethodCallback method. It can be done using lambdas, or std::bind.

cs.pushMethodCallback("level",[&lv](double val){lv.setLevelMeter(val);});

Internally, Csound will look the ”level” channel value at k-rate, and push the
lambda and the value in a queue. The queue is then processed in the Miup::MainLoop()
function. This part of the work benefits from the great work of Michael Gogins
on CsoundThreaded [2], which has been slightly modified to perform those call-
backs.
Example MIUP Simple program playing a sine

3 J tracker - a tracker interface for Csound

Tracker softwares, also called soundtracker, are musical sequencers which tracks
are based on a grid. Users can write values in the grid, corresponding to syn-
thesizers instructions. Those are often MIDI instructions (note, velocity), that
can be added to some basic controls on the note (pan,delay...). Sequencer starts
at the top of the grid, and iterates over each line, before reaching the last one.
Soundtrackers can be thought as step sequencers with an improved writing pre-
cision. This kind of software was very popular in the 1990’s. Today, only a few
of them are still under active development, including Renoise and OpenMPT.

Fig. 1. jo tracker version 2 (JPG).

Jo tracker is a tracker interface for Csound. Inspired by Renoise, it’s intention
is to mix editing ease of tracker softwares with synthesis precision of Csound.



Running Title 5

It can be used to generate some precise sound sequences and to write electronic
music. Its first version was a Max MSP patcher. Though, the software span
quickly required to be thought as an independant software, so it needed to be
based on a real programming language. The second version was written with Lua
(using IUP for user interface and Terra as a low level programming language for
C libraries). This version is far more efficient, really quicker than the first one.
Though, the codebase wasn’t easy to read, and so, was hard to maintain. In order
to distribute a clean version of jo tracker and MIUP, third version of jo tracker
and second version of MIUP are both fully rewriten in C++, with improvements
and some new features. It is a necessary work for further developments.

3.1 Base and principle

First requirement of jo tracker was to provide a track system, with tracks able
to manage an infinite number of parameters. With this feature, one line on a
track is equivalent to one csound score ”i” statement. This allows to combine or
choose between very descriptive scores and algorithmic orchestras. Each track is
shown as a spread sheet (See Fig. 1), where each column index corresponds to its
Csound equivalent p-field. Eeach track can contain a different number of columns
according to the needs of the instrument. Tracks number of lines and columns
can vary between two sequences. Though, the number of lines in a sequence is the
same for every track. In order to allow users to write some sequences, the tracker
implements the notion of sequence : a sequence is equivalent to a time section in
Csound. It’s an abstract concept that can be thought as a time item containing
score data. The main tab also contains one particular track : the tempo track.
It can be used to do some tempo interpolation, or to instantaneously jump
to another tempo. Obviously, jo tracker provides some facilities such as copying
any sequence’s data to another sequence, cleare data, save a project (in a human
readable text file), export a CSD file.

Fig. 2. Curve editor (JPG.



6 AuthorA and AuthorB (or AuthorA et al. if too long)

Second tab (See Fig. 2) is dedicated to GEN routines editing. It contains
three major elements :
- A curve editor, allowing user to draw curves that will be translated in the
GEN16 syntax.
- A waveform plot, mostly used to display waveforms from samples used as
GEN01 data.
- Another spread sheet which function is to describe some other GEN routines
data (simple arrays in GEN02, synthesis waveforms in GEN10).

There are three modes for starting Csound inside jo tracker. Each mode
generates a csound score, composed with one t statement (tempo track), multiple
(many) i statements, and some f statements corresponding to GEN editors data.
The main and first mode is activated by clicking the ”Play” button. It triggers a
call to Csound C API which starts a performance in realtime mode. The second
mode (Record button) triggers a realtime recording of the current project. It
is mostly useful if the orchestra is used with input channels or any realtime
external device. It records the project into a stereo WAV file. The last mode
calling Csound API acts as a non-realtime renderer, which also creates a stereo
WAV file. It can be activated by clicking the ”Render Stereo” item in ”Files”
menu.

3.2 New features, and upcoming improvements

Jo tracker’s third version brings a set of new features, allowing for a more flex-
ible use. Though, since third version is still under development, some of these
features are not ready yet.
-An embedded code editor for Csound orchestras. It allows user to write orch-
estas directly in the software. It provides syntax highlighting, autocompletion.
It also calls the Csound API function EvalCode to check whether current in-
strument uses valid Csound syntax. On success, it registers the instrument in a
database.
-Curve editor now supports spline mode (GEN08) and bezier quadratic curves
(GENquadbezier)
-A new editor allowing user to manage sequences order and number of loops.
As such, it can be considered as a meta editor allowing to manage the general
shape of a composition.
-Record and render modes are now available for multichannel audio files
-Tracks are connected to a macro system, based on Csound powerful macro sys-
tem.
-An audio device list is already implemented and will be added to the parameters
menu

As future improvements, both MIUP and jo tracker could benefit from Eric
Wing’s work [3] to port IUP on new platforms : MacOSX, Android, iOS, and Web
browser. Since a lot of musicians use MacOSX as their composing environment,
this target is considered as the major one.



Running Title 7

4 The References Section

References

1. IUP Tecgraf Puc site, https://www.tecgraf.puc-rio.br/iup/
2. Csound Github site, http://csound.github.io
3. Eric Wing Github site, https://github.com/ewmailing?tab=repositories
4. cpp11nullptr Github site, https://github.com/cpp11nullptr/lsignal
5. Niels Lohmann Json project Github site, https://github.com/nlohmann/json

https://www.tecgraf.puc-rio.br/iup/
http://csound.github.io
https://github.com/ewmailing?tab=repositories
https://github.com/cpp11nullptr/lsignal
https://github.com/nlohmann/json

	MIUP Portable User Interface for Music Example of jo_tracker - a tracker interface for Csound
	Introduction
	MIUP - a C++ user interface library for music
	MIUP basic functionnalities
	Main Features
	Code Examples

	J_tracker - a tracker interface for Csound
	Base and principle
	New features, and upcoming improvements

	The References Section


