Implementing Arcade by Giinter Steinke in
Csound

*

Daria Cheikh-Sarraf, Marijana Janevska, Shadi Kassaee, and Philipp Henke

! Incontri - Institut for contemporary music at the HMTM Hannover
? FMSBW

incontri@hmtm-hannover.de

Abstract. This paper is about the process of implementing the live-
electronics of the solo cello and electronics piece ” Arcade” by Giinter
Steinke. We will discuss problems that occurred during the process of
implementation and how we approached the transfer of the electronic
procedures that were originally on big hardware machines to the Csound
programming environment. The main focus of this paper also discusses
the possibilities of the Csound FrontEnd Csound@t, that we mainly used
for the performance with its GUI capabilities.

Keywords: CsoundQt, Live-electronic, Instrument, Hannover, Incontri,
FMSBW, Giinter Steinke, Arcade

1 Introduction

Back in the time of 1992, the German composer Giinter Steinke begun work
on a piece which was to become his cello and live-electronics piece. He couldn’t
have known that much of the equipment he was using in the Freiburger Ex-
perimentalstudio would soon become obsolete. As time passed, the computer
became increasingly accessible, convenient, and powerful. A piece which would
have required truckloads of equipment before could now be realized in a small
machine, namely the notebook. Powerful programming languages like Csound
made it possible to realize the needs of a piece like Arcade and to create a so-
phisticated version which is purely software-based. In this paper, we will describe
the process it took to realize a complex piece like Arcade in Csound and how
we dealt with other implementations of the piece in other music-programming
languages like Pure Data and Max/MSP.

2 Speakers and Microfon

In Gilinter Steinke’s Arcade, the cello, played live, should be amplified in addi-
tion to the electronics. To achieve and maintain a good balance in the overall
volume, we used two microphones for the performance at the Sprengel Museum

* Without the help of Joachim Heintz this would not have been possible.



2 D. Cheikh-Sarraf, M. Janevska, S. Kassaee, P.Henkel

in Hannover. Firstly, the Shure microphone: the advantages of this microphone
is its consistent cardioid characteristic, which should reduce feedback, and an
optimum transmission range for drums, percussion and instruments, which is
good for the pizzicati in the cello part. However, due to the weight of the coil,
the Shure microphone sometimes sounds sluggish, especially the high frequency
response, which may sound a bit covered. And secondly, the DPA microphone:
the DPA microphone is well suited for instruments. It is clear, clean, and has a
high-resolution. In this piece, the cello has a wide dynamic range. For example,
there are very quiet passages (see min. 09:00 ) of sul ponticello or pianississimo,
but also loud, dominant pizzicato parts (see min. 05:02), which sound very per-
cussive and present a strong contrast. It was often necessary to emphasize the
above-mentioned passages manually by amplifying the input of the cello, i.e. how
much came into the microphone or the two microphones. For the pizzicato parts,
we had to amplify especially the Shure microphone precisely for the percussive
parts. However, this could have been automated in order to avoid supposedly
minor errors.

3 Electronics and Problems of Implementation

Steinke’s Arcade uses a wide array of different electronic procedures. He uses dif-
ferent modules like, pitch-shifting, Halafon, delay-lines, noch weitere hinzufiigen!!!
Since 1992, Arcade has been translated for the computer. The first computer
realization was made with the programming language Max/MSP in 2000. An-
other significant implementation has been made for the Pure Data programming
environment by Orm Finnendahl, which was realistically, a translation of the
Max/MSP implementation. Analyzing all the implementations from the past,
there is no denial that each of the implementations had to deal with problems
of translation from hardware to software. One of the first tasks was to analyze
the possibilities of the Csound programming language, in order to avoid creating
a PD version in Csound, but rather a native Csound implementation using the
power of the Csound programming language.

3.1 Analysis

One of the first pitfalls to avoid when confronting an implementation is to re-
sist direct translation e.g. between PD-Objects and their Csound equivalents.
Oftentimes, one finds a similar opcode of the same name in Csound. However,
it should be noted that one has to first look at the specific functionalities of the
opcode, like the quality of the filter, and the order of the bandpass filter used.
While analyzing the Max/MSP and PD versions, one notices that both patches
do not actually use a filterbank like in the original realisation of Arcade, they
used stations of spectral masks done with fft, to create a similar sound to the
original filterbaks. However, this would contradict our approach and goal of a
Csound native implementation which is true to the orginal realisation, proposed
in Steinke’s score. Consequently, we sought solutions dealing with the wide array



Implementing Arcade 3

Koppelfeld[6 |
Koppelfeld[7 |
R ————— S e .
_—

Vi - =

Fig. 1. Example of the notation in Steinke’s Arcade

of filters that the Csound programming environment has to offer. Visually, the
biggest difference one finds when working on an implementation is that Steinke
used an analog matrix (Koppelfeld during the premiere of the piece. Because
the matrix is so essential to the functionality of the piece, Max/MSP and PD?
come with their respective matrix applications, whereas in Csound, a text-based
programming environment, one has to build the matrix to work while also using
the GUI possibilities of CsoundQt to make it more useable in the performance
situation.

Ezxample of the Matriz in Csound

/*%* MATRIX SETTINGS *%x/
instr Mtx_1

puts "Mtx_1", 1
chnset 1, "show_mtx"

ga_Harm_in = ga_Del_out

ga_Chnl_in = ga_HarmlA_out
ga_Chn2_in = ga_HarmlB_out
ga_Chn3_in = ga_Harm2A_out
ga_Chn4_in = ga_Harm2B_out



4 D. Cheikh-Sarraf, M. Janevska, S. Kassaee, P.Henkel

]
o

ga_Chnb5_in
ga_Chn6_in
ga_Filt_in
ga_Rev_in = 0
ga_HalaA_in
ga_HalaB_in = 0

ga_HalaC_in = 0

TurOff0therMtxs gS_Mtxs, "Mtx_1"

non
o O

0

endin
instr Mtx_2

puts "Mtx_2", 1
chnset 2, "show_mtx"

ga_Harm_in = ga_Del_out
ga_Chnl_in = ga_HarmlA_out
ga_Chn2_in = 0

ga_Chn3_in = 0

ga_Chn4_in = ga_Harm2B_out
ga_Chn5_in = ga_Harm2A_out
ga_Chn6_in = ga_HarmlB_out
ga_Filt_in = 0

ga_Rev_in = 0

ga_HalaA_in = 0
ga_HalaB_in = 0
ga_HalaC_in = 0

TurOff0therMtxs gS_Mtxs, "Mtx_2"

endin

Example from the Csound implementation of Arcade by Giinter Steinke. In creating
a hybrid gui application handling the matrix fucntion for us, we found a con-
vinient way to solve the problems concerning the realisation of Steinke’s analog
Koppelfeld.

3.2 Filters

An important aspect of our implementation is that we did not use fft to recreate
a sound emulation sounds of the premiere, but instead implemented Csound na-
tive filters to patch the piece. It has been the first realization since the premiere
that uses true filter processing instead of spectral masks done in former imple-
mentations. In the process of programming the filters, we made a long process
testing out the different filter opcodes in Csound. The filters are a crucial part of



Implementing Arcade 5

®rErmrm> srErere
g85%§gg5% ggssggss

FEEsE

c ANNENEEE NEEEEEEE EEEEEEEE

Fig. 2. Example of the Widget view of our implementation (PNG).

the piece, in particular the way the piece sounds, for that we had to understand
after what sound the composer is after. We decided to choose the mode filter
opcode, because it could produce a very transparent and resonant sound com-
bined with the cello. However there was an argument concerning the stability of
the opcode and the advantages of using the reson filter over the mode filter.
Implementations of the original filter modules

/*xx FILTER *xx*/

instr Filt_Seq_1

kndx init O

kTime init O

kFiltSeq[] = gk_Filt_Seq_1
iFirstProg = 1

if kTime <= 0 then
event "i", "ReadFiltProg", 0, 0, iFirstProgtkndx
kTime = kFiltSeq[kndx]
kndx += 1
if kndx == lenarray(kFiltSeq) then
printks " Filt_Seq_1 turned off\n", O
turnoff
endif
endif
kTime -= 1/kr
endin



6 D. Cheikh-Sarraf, M. Janevska, S. Kassaee, P.Henkel

instr Filt_A

iBand = p4
S_chnl sprintf "Filt_A_%d", iBand

//midi pitch one tone below the first band
iBasPch = 34
iQ =1

iFreq mtof iBasPch + iBand*2

kDb chnget S_chnl

kDb port kDb, gi_Filt_FadeTim

aFilt mode ga_Filt_in*ampdb(kDb), iFreq, iQ

chnmix aFilt, "filt_A_collect"

endin
Example from the Csound implementation of Arcade by Giinter Steinke.

4 Performenace Situation

In the case of Steinke’s Arcade, not only the electronics and amplification played
an important role. In the original score, the ”programs” indicate which effects
are triggered and which cello parts are recorded and edited with filters, delays
etc. In our Csound version, the so-called ”cues” always have sections that have
been recorded through the microphone, which can be activated and stopped,
effects being played on them and previously recorded patterns repeated. The
difficulty was to activate the cues at the right moment. In certain places, for
example where a delayline of the cello should be played back through the speakers
which then would occur at the same time with the live cello, one has to be as
precise as possible. No sounds or noises appearing too early or too late should be
allowed into the triggered cue, since they could partly pull through the delays
and through the whole piece, which would be a major disruptive factor. It is
even more important not to leave everything to technology and to operate the
cues and mixers by ourselves, as any performance of the live cello could vary in
speed. It is a great help at particularly critical points in the play to agree with
the player on assignments, so as to adapt the cues to the live cello as precisely as
possible. Since this piece, and this is what makes it so special, even one wrongly
timed cue can be heard as an error in the process of the piece. That is why one
has to be precise with the triggering of the programs/cues.

4.1 Summary

Csound together with it’s frontend CsoundQt provide sophisticated means to
implement complex sounds and structurs into a simple and easy to use per-



Implementing Arcade 7

formance enviroment. As a text-based programming enviroment, csound is also
easy on the CPU and can handle difficult calculation tasks, like multiple filter
layers and harmonizer layers as well as complex spatialisation. However where
Csound shines the most is it’s tonal flexibilities and wide array of opcodes that
help to shape the sound in many different ways. The csound frontend CsoundQt
proved to be very useful in the performance situation, concerning the capability
to use the widget to control the parameters of the electronic in realtime in a
convenient way.

References

1. Heintz, J. et McCurdy, I.: Csound Floss Manual. Creative Commons Attribution
2.5 (2015)

2. Lazzarini, V. et al.: Csound: A Sound and Music Computing System. Springer (2016)

Steinke, G.: Arcade fiir Solo Cello und Live-Elektronik. Boosey and Hawkes (1992)

4. Csound Github site, http://csound.github.io

w


http://csound.github.io

	Implementing Arcade by Günter Steinke in Csound
	Introduction
	Speakers and Microfon
	Electronics and Problems of Implementation
	Analysis
	Filters

	Performenace Situation
	Summary



