
Preliminary study for a chorus opcode

Daniele Cucchi and Stefano Cucchi

I.T.B. Project Studio
d cucchi 1976@yahoo.it

s.cucchi@itbprojectstudio.com

Abstract. In this paper we submit the hypothesis of a new “chorus”opcode
in Csound. We wrote a simple program in Octave language witch gen-
erate random values read by Csound in a further step. These values are
used to modify the original playback speed of a audio file. Good choice is
to use white sequence of uniform distribuited samples filtered by 1-pole
system to obtain low-pass behaviour. Some considerations about ampli-
tude distribution of results and proposals to manage it will be done.

Keywords: Chorus, New opcode, Asynchronous playback, Variable de-
lay, Random speed, Random, Noise.

1 Introduction

One of the main features of computer music is the “perfection”of synthetized
sound and music in terms of intonation, timing, waveforms, etc. . . Avoiding any
kind of aesthetic judgement, there are many cases in which we want add some
imperfection to the sound in order to make it more “real”and, maybe, pleasant
to the ears. There are many ways to obtain the same results, tipically using
through noise. The idea of this paper is to analyze some aspects of the noise
”opcodes” and of introduce an alternative form of it.

2 The “noise”opcode in Csound

In Csound there is an effective “noise”opcode with a IIR lowpass filter.

Yn =
√

(1− β2) ∗Xn + βY(n−1) (1)

The β (kbeta value in the score) determines the filter’s cutoff frequency. According
to the differents values of kbeta the behavior of the noise can vary from oscillation
around a value to a kind of “drift”similar to the loss of intonation typical of
analogic instruments. The a-rate noise can be used in association with the couple
phasor - tablei in order to have subtle changes in speed, or downsampled to a
k-rate signal to achieve little fluctuation of volume or intonation.

Asimptoticaly, the values of Y are distribuited like a gaussian, so it means
that not all possible values are extracted with the same probability. Moreover
the maximum values reached depends by the length of the sequence: the longer

2 Daniele Cucchi and Stefano Cucchi

the sequence then more possibility you have to extract higher values. This is not
a real problem with the most part of applications but sometimes could be useful
to have a major control of amplitude distrubution.

Fig. 1. original opcode

The figure 1 is the histogram distribution obtained by invoking noise opcode
with parameter β of value 0.9.

3 The first modified noise generator

We define T (threshold) as the maximum admitted value for the sequence. So
we modify the original equation as below:

W =
√

(1− β2) ∗Xn + βY(n−1) (2)

Yn = min(|W |, T) ∗ sign(W) (3)

With this form of recursive formula we have the assurance that no value has
module greater than T.

The figure 2 is the o obtained histogram distribution with T=0.7. It’s clear
that this simple algorithm is not the optimal one cause it create artificial and
unwanted excess of extracted samples with value T.

Chorus 3

Fig. 2. 0.7 threshold

4 The second modified noise generator

The kernel of evolution is the well kown equation.

W =
√

(1− β2) ∗Xn + βY(n−1) (4)

If abs(W) is smaller than T nothing happens, otherwise some bounce back
from threshold is implemented. The Octave code describe one of possible imple-
mentation of this bounce.

As expected there are no peaks of distribution around T visible in figure 3.

4.1 Octave Code

Here Octave code used to generate random sequences

Octave code

clear

close all

rand("seed",32);

standard_T = 0;

wrapped_T = 1;

T = 0.7;

4 Daniele Cucchi and Stefano Cucchi

Fig. 3. 0.7 advanced threshold

nomefile="random_y";

L = 200000;

beta = 0.9;

x = rand(1,L);

x = x-0.5;

base = 0;

for k =1:L

passo = x(k)*sqrt(1-beta*beta);

old_base = base;

base = base*beta+passo;

if wrapped_T == 1

if base > T

passo = passo - (T-old_base);

base = T - passo;

end;

if base < -T

passo = passo - (-T-old_base);

base = -T - passo;

end;

end;

Chorus 5

if standard_T == 1

if base > T

base = T;

end;

if base < -T

base = -T;

end;

end;

y(k) = base;

endfor;

4.2 Csound code

Here the Csound instrument used to test some sequences. This code use the
input sequence to vary the playback speed of an audio file, but it’s only one of
the possible utilizations.

Csound code

<CsOptions>

</CsOptions>

<CsInstruments>

sr = 44100

kr = 4410

ksmps = 0

nchnls = 2

0dbfs = 1

strset 1, "sinusoide.aif"

instr 1

iformat1 = 7

iprd1 = 0.08

kveldev1 readk "random_y", iformat1, iprd1

Sfile strget p4

aoriginal diskin2 Sfile, 1

achorus1 diskin2 Sfile, 1 + (kveldev1*p5)

outch 1, aoriginal

outch 2, achorus1

endin

</CsInstruments>

<CsScore>

i1 0 10 1 0.99

e

</CsScore>

6 Daniele Cucchi and Stefano Cucchi

</CsoundSynthesizer>

5 Conclusions

We described two variation of original noise opcode which give us an adjoint
parameter controlling the dynamic of the system and can be useful when it’s
important to limit the maximum module of the sequence. Probably to really
arrive to define a new opcode would be necessary a more depth study about
control of amplitude distribution. It should be interesting investigate also the
combination of different effects varying β and T parameters.

References

1. ffitch, J.: A look at Random Numbers, Noise, and Chaos with Csound. In: R.
Boulanger (ed.) The Csound Book, pp. 321–338. MIT Press, Cambridge (2000)

2. Csound Github site, http://csound.github.io

http://csound.github.io

	Preliminary study for a chorus opcode
	Introduction
	The ``noise''opcode in Csound
	The first modified noise generator
	The second modified noise generator
	Octave Code
	Csound code

	Conclusions

