
The Fifth International
Csound Conference
ICSC2019
27-28-29 September, 2019

PROCEEDINGS

Municipal Theater
Cagli (Pesaro-Urbino), Italy

Theater Academy of Cagli

Institution for the Cagli
Municipal Theater

Cagli Municipality

ISTITUZIONE
TEATRO
COMUNALE
CAGLI°

Alessandro Petrolati

Alessandro Petrolati

Alessandro Petrolati

Alessandro Petrolati

Proceedings of the Fifth International Csound Conference

Edited by:

Anthony Di Furia and Alessandro Petrolati

icsc2019@apesoft.it

Published by:

Theater Academy of Cagli, Italy

ISSN 2393-7580

https://csound.com/icsc2019

© 2019 International Csound Conference

Organizing Committee
Theater Academy of Cagli
Institution for the Cagli Municipal Theater
Cagli Municipality

Organization Team
!�������$��&����
%������&��������
Eugenio Giordani
,�����-�������
Alessandro Petrolati

Institutions
Alberto Alessandri, Mayor of Cagli Municipality
Ombretta Michelini, President of the Institution of Theater
Sandro Pascucci, Director of the Institution for the Cagli Municipal
Theater
Benilde Marini, Assessor of Culture
Simonetta Paolucci, President of the Theater Academy of Cagli

Paper Review Committee
Øyvind Brandtsegg
*����&����
Eugenio Giordani
Michael Gogins
Tarmo Johannes
,����*��	
6������,� �����
Steven Yi

Music Review Committee
%������&��������
Joachim Heintz
Alex Hofmann
Iain McCurdy
,�����-�������
Alessandro Petrolati
Andrea Petrolati

Conference Chairs
Gianni Della Vittoria
,	�������'����	����
Eugenio Giordani
Alex Hofmann
Massimiliano Tonelli

Special thanks
Bruno Marcucci, for donating ten original Art works Iceberg, 2019
Gianpaolo Antongirolami, for the Mencherini’s tribute concert
6��	��'	���Q�
������������®�	�!�����	�	��
��������������	�����	�����

Guest musicians
Gianpaolo Antongirolami
#�����&�������
Nigel Thean

The Fifth
International
Csound
Conference
ICSC2019
Cagli, Italy

Sebastian Schmutzhard
Jakob Krupp
James Edward Cosby
Pierfrancesco Ceregioli
Alessandro Guerri
Elena Alessandra Petrolati
Andrea Petrolati

Credits
Alberto Alessandri and Gianluca Cespuglio, Unione Montana
Catria e Nerone
&	�	�����0�	����������-���� ���4������	���
Denis Rebiscini, Vodafone

MATME synth exhibition
Paolo Bragaglia
,	�������'����	���

Photographer
Maurizio Tagliatesta

Web, design, music review coordinator
!�������$��&����

Audio Service
SwanSound by Enzo Geminiani

Technical service
Andrea Balducci
!�������$��&����

Partners
Unione Montana Catria and Nerone
MATME, Marche
Conservatory of Music Rossini in Pesaro
,%-3Q�#���	���������
�-�����2����������0	����
SPACE, Conservatory of Music Rossini in Pesaro

Hostess
%�	���,� �	���
Elena Alessandra Petrolati

Internet provider
6���
��	�A'

Sponsors
apeSoft
Vodafone
,��'�������
SwanSound
Caffè del Teatro
Out Of Range
Associazione Bello Sguardo
BCC

The Fifth International Csound Conference
ICSC2019 will take place in Cagli (PU), Italy

The ICSC is an artistic and academic event where
members of the international Csound community
meet for three days of concerts, paper presenta-
tions, keynote talks and round tables.

Organizing Committee
Theater Academy of Cagli
Institution for the Cagli Municipal Theater
Cagli Municipality

Organization Team
!�������$��&�����
%������&���������
Eugenio Giordani
,�����-��������
Alessandro Petrolati

Contact

ICSC 2019
������N���i����?;>F
icsc2019@apesoft.it

Municipal Theater
www.teatrodicagli.it
~�@F�;D?>�DE;D@>

The Institution for the Cagli Municipal Theater is the public body that oversees the
activities taking place on the historic stage of the city.
It is with pleasure that it welcomes and supports the work of “The 5th International
Csound Conference ICSC 2019”, following in the tradition of hosting important events
�����	�®	����
������Q�����	���������	N
The Cagli Theater seeks to be a “sanctuary for the arts” or, as the ancient Greeks
�	�����	����Q̾���W����	�����������	��������
�������	XQ�������	���	�������	����	������
���
artists and public alike.
̾
Sandro Pascucci, Director of the Institution for the Cagli Municipal Theater

The Theater Academy is an artistic and research action. It is virtual until the moment
of the concretization in action. It recognizes music as one of the most extraordinary
forms of individual and collective evolution. Being musician is a challenge, but music
brings knowledge, expands consciousness and elevates the spirit. Changing realities
�������
®��������Q������������������	��	�Q��������	�Q��������	�	��
����������	�����������
certainly achievable.

Laura Muncaciu, Artistic Director
Simonetta Paolucci, President
Alessandro Petrolati, Executive

7	����	������	�	�����	�®
���)#3#�c)��	����������#������#��
	�	��	dQ�	������	�����
�	��
����®����	������Q�������������	�����	�	��������	������������������	������-�������N�
The Conference will take place in Cagli a small nevertheless historically important
Italian town, being part of the Byzantine “Pentapoli Montana” in the Marche Region,
culturally rich, plenty of monuments, historical vestiges and natural beauties.
If we compare Cagli with the greater centers that have hosted all the previous editions
from Hannover to Boston, from St. Petersburg to Montevideo we can’t help seeing the
difference.
However, the sense of belonging to this extraordinary international community
challenged the organizers who nevertheless wanted to measure themselves, still
������������������	��������������
®�����	���������	�����	�����������	�	��N�"�������Q��	�
�	��	�	Q����	��	�	�����	������®�������	������	���������������������	����	��	�	��	��
from all those who have with great enthusiasm and generosity cooperated in its
realization, starting from the keynotes to the lecturers, from the composers, to the
performers and the many volunteers we want warmly thank.
We are also grateful for the great work done by the reviewers of the papers and the
compositions and to all the chairmen who have accepted our invitation.
But nothing arises by chance: the Marche Region holds some musical and technical-
musical treasures appreciated all over the world such as the prestigious Conservatory
of Music Rossini in Pesaro as well as a great construction electronic and acoustic
instruments tradition, well known in every part of the world as witnessed by the Museo
del Synth Marchigiano.
Moreover, it is not a coincidence that at the Rossini Conservatory is present an almost
®
��I�	���%�	��������-������������	��������	�����>FD>�������������������������	�������	�
	�	�������� ������ ������� c,%-3d� ���� �� �������I	��	� !��������� ����� c30!#%dN� !���
it is from this school that all the organizing group members came out and of which
I am honored to be part. With a certain pride I can testify the great passion and
�	�����������	�	����		�
���	������	�����
����	�c!�	��������0	�������Q�%������&���������
����!�������$�� &����� ���	��	������� ,�����-�������d����	� �����	�������	����������
and dedication to work over the years to cultivate their passion, competence and
musical activity through this precious our travel companion which is Csound, now so
determined and decisive in the realization of this extraordinary opportunity.

We wish sincerely to acknowledge the local institutions that have concretely supported
��P� ®���� ��	� -�����������I#�����	� $	�����	��� ���� ��� ����������� 3������ 0��������
director of the Institution for the Cagli Municipal Theater and the Theater Academy
of Cagli.

We want also to dedicate this event to the composer and dear friend Fernando
Mencherini, who has honored with his art and his humanity, the city of Cagli in the
world.

Eugenio Giordani, Cagli, September 2019

Keynotes

ABSTRACT
I started using Csound in the late 1990’s, when it was
����� �	������ �������	� ��� ��	� ��� ��� �	�����	N�)� ���� ���	�
musical desires that prompted me to look into it, even
if the learning curve was pretty steep at the time. In
the beginning I would combine Csound with hardware
synthesizers and samplers, and also used Max to
interface with external sensors and overall control. Over
the years, as the available processing power increased
and Csound developed, it was possible to build a live
setup based exclusively on Csound. With the advent of the
Csound API it was easier to interface to other languages
and technologies. This opened possibilities for writing
a realtime algorithmic composition system for use in
live performance and sound art installations. Building
an audio system for installations running several years
required some extra attention to issues of stability and
maintenance. As these systems became more complex,
the need for modularization grew stronger. Some of
��	�������������	��������������	���	���®	������	�����
���
more general nature, allowing integration with off-the-
shelf tools. This again enhancing Csound’s strong points
as a development tool for customized audio processing.
Isolating the components that actually need to be new,
implementing them as opcodes or instruments.
4�	������������	����������	�����������	�������	����#������
over the last 21 years, including recent efforts into
crossadaptive processing and live convolution.

Øyvind Brandtsegg
Norwegian University of
Technology and Science
“21 years of live
performance and
installations with
Csound”
- How Csound has always
been there for me

ABSTRACT
What might Csound look like in the future and how
do we get there? In this talk, I will assess the state of
Csound today, both the good and the bad, and propose
a roadmap to guide us through the next generations of
Csound.

Steven Yi
Assistant Professor, Inte-
ractive Games and Media
Rochester Institute of
Technology, USA
Tomorrow’s Csound

ABSTRACT
This talk discusses Csound as a sound and music
computing system at the centre of an ecosystem of
������������N�&���������®
�		���	�������Q���	���
����	�
has developed a formidable array of connections to
other programs, at various levels of user interaction,

���� ����� ��� ���N� 3���	� ���� ®���� �	�	��	Q� #������ ����
provided an ideal studio platform for
research and production, providing means for
extensions and connections to other systems. In time,
this ecosystem was widened as part of a calculated
development strategy that placed Csound at the centre
of a variety of applications. In this talk, we will explore
the Csound ecosystem, with some illustrated examples.
As part of this, we will also evaluate critically these
developments, proposing some thoughts for
��	��������	�����������#������DN

Victor Lazzarini
Dean of Arts, Celtic
Studies, and Philosophy,
Maynooth University,
Ireland
Csound + _: Notes on an
Ecosystem

ABSTRACT
I am truly honored to have been invited to present one of
the keynote addresses at The 5th International Csound
#��
	�	��	�I�)#3#�?;>F����#�����c0	����I5�����d�)����N�
Thank you so very much for this wonderful invitation
to share some of my more recent thoughts, to perform
some of my newest music, and most importantly, to
publicly express my gratitude to so many, here at this
conference, and in the international Csound community,
whose instruments, code, research, and music have
�		����������������	���
������������N��!����������������	�	�
many “sources of inspiration” that are brought to mind
in today’s keynote, especially the beautiful instruments
���� ������ �
� ��� ����	��� 3�	�� �	��� :����� ca.k.a.
John TowsedQ� �������	��	�����������	����	�����������
dedicated.

Richard Boulanger
Professor of Electronic
Production and Design
Berklee College of Music
Boston Massachusetts,
USA
Dedicating My Musical
Life to the Mastery of
a Virtual Instrument –
Csound
A Keynote Speech and
Presentation to The 5th
International Csound

ABSTRACT
Whatever music be, it is based on listening. Composing
can be considered as listening to sounds and
investigating their tendencies. Can learning Csound be
considered as learning music by learning to listen? And
how well is Csound suitet to materialize the composer's
ideas about sounds and structures? The keynote will

��������������	�	���	�������I��	�������������������®����
answer at its end, but hopefully with some inspirations
for the listeners.

Joachim Heintz
HMTM Hannover,
Germany
Head of Electronic Studio
&-3"7�
Learning Csound,
Learning Music

ABSTRACT
4�	� �	�������	�	�)#3#� ?;>F� ���	�� ����	Q� ,	�-����	Q�
is known worldwide for its long tradition of musical
instruments manufacturing, which dates back to 1863,
when - according to the tradition - Paolo Soprani built his
®�������������N�3���	���	�Q����	�	�Q�	�	������������		���
���� $30� �	�	���	��� ���	� ����	�� ������������ ����������
craftsmen to cyclically renew the industry, in the effort
to keep up with global standards.
)�� >FEEQ� ��	� "���	���I&��®��� ������
����	�� ��	�
IRIS lab, led by Giuseppe di Giugno and run by
several outstanding developers and computer music
researchers. The MARS workstation was one of its most
prominent outcomes, and it was employed for several
computer music works of the 1900s. It was programmed
using ARES, a rich computer music platform based on
graphical patching.
All this material and history is now coming back to
light after the accidental discovery of machines and
documents long forgotten in an abandoned factory.
After reactivating and restoring computers and their
software, thanks to the effort of the Acusmatiq-MATME
association, we are now able to run ARES and its patches.
This software will be described and linked to other
existing computer music languages, including CSound
and Max. The talk includes footages and documents
produced by the Acusmatiq-MATME association.

Leonardo Gabrielli
Università Politecnica
delle Marche, Italy
From Le Marche to
MARS: a journey through
accordions, synthesizers
and computer music

Conference
Program

Processing Nature 1

Processing Nature: Recordings, Random Number

Generators and Real-Intrinsic-Extrinsic Perceptual

Threads

Mark Ferguson,

University of Birmingham
mgf864@student.bham.ac.uk

Abstract. In this paper, I propose the concept of the real-intrinsic-extrinsic

perceptual thread in acousmatic composition, which has become deeply inter-

twined with my wildlife sound recording practice and non-realtime use of

Csound as a processing tool in the studio. The concept draws heavily from De-

nis Smalley's spectromorphological discourse regarding intrinsic-extrinsic

threads and source-bonding (referenced throughout). Following a brief intro-

duction (and in an attempt to articulate my thoughts from a practical perspec-

tive), I discuss processing approaches for two, recently-completed acousmatic

works, in which Csound's random number generating opcodes were employed

to break apart natural source recordings and create complex, secondary source

materials. I then proceed to break down and describe the real, intrinsic, and ex-

trinsic thread components separately. The paper concludes with a brief summa-

ry of the proposed concept and the role of Csound in its development, followed

by a consideration of its apparent linear aspect and recent influence on my

technical recording methodologies.

Keywords: wildlife sound recording, nature, random number generator, non-

realtime processing, acousmatic composition, methodology, spectromorpholo-

gy.

1 Introduction

My ongoing PhD research fuses two practices: wildlife sound recording and acousmatic

composition.

Drawing exclusively from an ever-growing, personal sound library of species, sound-

scapes and abiotic phenomena, I use Csound (in conjunction with a range of other stu-

dio plug-ins and effects units) to extract hidden sonic detail out of my own wildlife

recordings, generating complex, secondary source materials for fixed media electroa-

coustic works. These new sources are often combined and juxtaposed with original, un-

altered (primary) source recordings to create unique sound worlds of my own imagin-

ing.

A fundamental component of this compositional workflow involves the non-realtime

use of Csound instruments constructed around random number generating, control-rate

2 Mark Ferguson

modulation blocks. These instruments, which often feature opcodes such as randomi

and jitter, are repeatedly applied to wildlife recordings to generate new sonic content.

As my research has progressed, I have been particularly struck by the inherent power

of such randomly-driven instruments to 'grow' or give birth to species and natural phe-

nomena; to slowly tease sounds with 'imagined, extrinsic connections'[1] out of pro-

cessed material (which was itself derived from unaltered, real-world recordings). I call

this compositional workflow, which traces a perceptual path from real to abstract to sug-

gestive, the real-intrinsic-extrinsic perceptual thread: a concept I attempt to formalise

in this paper, and which draws heavily from Denis Smalley's spectromorphological dis-

course regarding intrinsic-extrinsic threads and source-bonding.

In order to articulate the concept, I first outline some random-number-based process-

ing approaches for two, recently-completed acousmatic works. I then discuss the real,

intrinsic and extrinsic thread components individually. The paper concludes with a brief

summary of the concept and the role of Csound in its development, followed by a con-

sideration of its apparent linear aspect and recent influence on my technical recording

methodologies.

2 A Practical Overview

In the following sections, I provide brief, code-based overviews of my use of random

number generating opcodes in Csound. The examples are taken from instruments used

during the recent composition of two acousmatic works: Deadwood and Shorelines.

My intention at this stage is to outline the real-intrinsic-extrinsic perceptual thread

concept from a practice-based perspective.

2.1 Deadwood

The first acousmatic composition as part of my doctoral research,1 my main objectives

with Deadwood were twofold: to lay an aesthetic foundation for future work, and estab-

lish the effectiveness of using wildlife source materials exclusively as compositional

building blocks in the studio.

A seven-minute, octophonic piece, Deadwood takes the listener on an imaginary

journey through the internal and surface sound worlds of a rotten branch. Whilst a

lengthy source recording of internal branch vibrations serves as a consistent

structural/sonic foundation, the main 'subjects' are actually tiny, invertebrate creatures,

whose detailed sounds were crafted from highly-processed, layered recordings of wind,

water and birdsong.

Pivotal in the generation of this so-called invertebrate material was the use of a rela-

tively simple, eight-channel random panning instrument in Csound, whose unpre-

dictable fluctuations were built around the following, jitter and randomi control block:

krndcps jitter kamp, kcpsMin, kcpsMax

krndcps1 = krndcps+kamp

1 Generously supported by the Midlands4Cities Doctoral Training Partnership and AHRC.

Processing Nature 3

krnd1 randomi 0, 1, krndcps1*iscale

krnd2 randomi 0, 1, krndcps1*iscale

krnd3 randomi 0, 1, krndcps1*iscale

krnd4 randomi 0, 1, krndcps1*iscale

The four, k-rate randomi outputs control the input panning argument values of four

corresponding pan2 opcodes, which output the original source sound as follows:2

asig diskin2 ifile, ipitch*krndpitch

amix = asig*iamp

a1, a2 pan2 amix, krnd1

a3, a4 pan2 amix, krnd1

a5, a6 pan2 amix, krnd1

a7, a8 pan2 amix, krnd1

; French 8 pair routing.

outo a1, a3, a2, a4, a5, a7, a6, a8

This amounts to random, eight-channel control of four loudspeaker pairs, which can

be configured to 'French' eight, 'American' double-diamond and other octophonic rout-

ing standards via outo.

Pushed to the extremes, jitter control was used to impose rapidly fluctuating panning

values on loudspeaker pairs. After a certain threshold, source materials began to frag-

ment and take on the textural character of pointillistic sounds generated through granu-

lar synthesis; at this point, rapid loudspeaker panning (which can be regarded as a form

of spatial amplitude modulation) entered the domain of microsound.3

With repeated processing in Csound, these ripped, torn, intrinsically-detailed textures

took on imagined, extrinsic characteristics: to my ears, strongly source-bonded to a mi-

croscopic sound world inhabited by invertebrates such as beetles, centipedes and milli-

pedes.4 These features were subsequently isolated and shaped to envelop the audience in

the intimate, internal spaces of a piece of dead wood.

2.2 Shorelines

Building on the successful UK premiere of Deadwood, my processing approach with

Shorelines focused on relatively simple bandpass filter designs. My intention once again

was to generate abstract base textures from real-world source recordings, then repeated-

ly apply specific Csound instruments to draw out additional sounds with imagined, ex-

trinsic connections.

2 After some experimentation, pan2 was favoured sonically over the higher-level pan.

3 A fascinating approach to processing, and one I hope to explore further in the future.

4 Source-bonding and other spectromorphological terms are addressed in subsequent sections.

4 Mark Ferguson

A series of reflections and re-imaginings from Talisker Bay Beach on the Isle of

Skye, this ten-minute, octophonic work is also concerned with microscopic sonic detail,

exploring seaweed textures, the imagined feeding processes of limpets, crabs and snap-

ping shrimp, and jellyfish propulsion mechanisms. Themes of ancient volcanic activity,

subterranean tectonic shifts and my own ancestral connections between Scotland and

Northern Ireland are also explored.

In the early stages of composition, a random bandpass filter instrument was created

in Csound to begin intensively processing and re-processing selected source recordings.

The vast majority of materials used in the finished work were generated from sound-

scape and subterranean beach recordings, with excerpted river, stream and invertebrate

sounds used for additional layering.

Three randomi opcodes were used in a control block for random modulation of filter

frequency and bandwidth as follows:

kbwmod randomi imodmin, imodmax, imodcps

krandfr randomi irfrqmin, irfrqmax, irfrqcps

krandbw randomi ibwmin, ibwmax, kbwmod

Notable here is the use of an extra randomi opcode to modulate input arguments

within the control block itself: in this case, the rate of random bandwidth values written

to the variable krandbw.

Various butterbp filters were subsequently added in combination with diskin2, which

could be programmed to skip as needed to interesting portions of the relevant source

recording. Using the simple control architecture outlined previously, the frequency and

bandwith input arguments of each butterbp filter were modulated directly, with a base

filter frequency added to focus processing on relevant portions of the audible spectrum:

asig diskin2 ifile, ipitch, iskip

abpfilt butterbp asig, ibasefr+krandfr, krandbw

Given the tendency for random bandpass filtering to 'blow-up' and produce uncon-

trollable amplitude values, clip and limit opcodes were used at the output stage.

After employing this relatively simple, random bandpass filter design to generate

base textures rich in intrinsic detail, repeated processing led to the emergence of highly

complex gestures and textures, many of which were suggestive of marine species and

their various behaviours.

3 Perceptual Thread Components

I now attempt to break down and explain the real, intrinsic and extrinsic components of

the perceptual thread concept.

Processing Nature 5

3.1 Real

Perception/exploration of the real as a wildlife sound recordist is the first stage in all of

my compositional work. This essentially boils down to specialised field recording, using

parabolic reflectors, tripods, highly-sensitive microphones and a range of other, custom-

built, application-specific solutions.

Recording subjects range from birds, mammals and amphibians to plants, insects and

atmospheres. These are what I call primary compositional sources: real-world record-

ings, entirely unprocessed (save for basic level adjustments and the removal of the very

lowest frequencies, where applicable).

All of these primary sources are meticulously documented and catalogued as part of a

growing, personal sound library.

3.2 Intrinsic

As Smalley notes, intrinsic features essentially refer to the raw, sonic characteristics of

an electroacoustic work: 'sound events and their relationships as they exist within a

piece of music'.[2] In other words, the intrinsic focuses on raw, internal spectromorpho-

logical detail, and is strongly bound up with Pierre Schaeffer's concept of reduced lis-

tening.5

In my own work, through the application of random processing methodologies using

Csound in conjunction with other software, abstract, highly-complex textures and ges-

tures are generated from original source recordings. It is at this stage that I begin to en-

gage in the process of reduced listening and focus on perceiving intrinsic detail.

3.3 Extrinsic

As processing intensifies, external, extrinsic connections are often made: for example,

throaty gestures may suggest complex, internal species vocalisations, or a rough, uneven

texture may imply dragged motion across a pebble-strewn surface.

Smalley notes how the 'wide-open sonic world of electroacoustic music encourages

imaginative and imagined extrinsic connections because of the variety and ambiguity of

its materials'.[4] This ultimately equates to source-bonding: a concept also created by

Smalley to represent the intrinsic-extrinsic link, and defined by him as 'the natural ten-

dency to relate sounds to supposed sources and causes, and to relate sounds to each oth-

er because they appear to have shared or associated origins'.[5] He also notes how, for

the listener, source bondings can be actual or imagined, and may never have been envis-

aged by the composer in the first place.[6]

These perceived extrinsic connections often have a powerful influence on how a

work progresses. In Shorelines, vivid extrinsic connections were made to perceived,

aquatic species snaps, pops and propulsion mechanisms when working with highly-pro-

cessed sand and water material. These details were subsequently extracted and worked

into the final version of the piece.

5 Described by Smalley as, 'an abstract, relatively objective process, a microscopic, intrinsic lis -

tening'.[3]

6 Mark Ferguson

4 Conclusion: Threading Everything Together

In proposing the concept of the real-intrinsic-extrinsic perceptual thread, what I have ul-

timately attempted to do is formalise various aspects of my own compositional process,

as opposed to articulate a fully-fledged theory or body of terms. At this early stage of

my doctoral research, I find the concept particularly useful as an aid to creative think-

ing, and to instil an awareness of workflow: of how to trace a path from initial recording

to intensive processing and, finally, the imaginative construction of sound worlds

through perceived extrinsic connections.

The fact that Csound has played a key role in the development and refinement of my

compositional process and the notion of perceptual threads is no accident. I find the use

of random number generating opcodes complementary to many of the unpredictable and

exciting behaviours encountered whilst recording wildlife. I also see workflow parallels

between the use of Csound and the practice of wildlife recording. Planning for the best

recording opportunities essentially boils down to planning against the highly unpre-

dictable elements of nature, narrowing-down and quickly adapting once a particular tar-

get species emerges; similarly, the unexpected sonic material thrown out by randomly-

driven Csound instruments must be adapted to through further input argument refine-

ments within the control block, in order to continually focus processing and chase soni-

cally engaging material.6

Although I have highlighted the linear aspect of the perceptual thread concept, this

has largely been for the benefit of clear presentation and outlining of compositional

process. In my own experience, sonic perception does not function so linearly, and each

component (real, intrinsic, extrinsic) is deeply intertwined; it is not a simple matter of

proceeding in a single direction. For example, whilst recording the real has certainly in-

formed my intrinsically-focused studio work and subsequent connections with the ex-

trinsic, the extrinsic (what I have imagined and constructed compositionally) has also

re-informed my perception of and approach to the real.7

Perhaps the most striking influence in this regard has been the modification of techni-

cal recording methodologies. In my recent search for bumblebee sounds, my approach

has centred largely on using a small, handheld microphone to follow the bees and cap-

ture their flight buzz. This has now broadened to include highly-proximate mandible

and body sounds as the bees gather nectar and pollen inside flowers, using miniature

microphones placed directly on petals and other plant structures. I believe the search for

these hidden sounds has been directly influenced by extrinsic connections to inverte-

brate activity made during intensive processing for Deadwood.

It will be interesting to see where all of this leads over the course of my doctoral re-

search, as I explore various Csound instrument designs in my continued exploration of

real-intrinsic-extrinsic perceptual threads.

6 In addition, I find my continued, preferred non-realtime use of Csound complementary to a

wildlife recording approach centred on patience, and the requirement to listen back intently to

many hours of recorded material.

7 The possibility for perceptual thread truncation should also be noted: in the future, I may sever

the link between intrinsic and extrinsic components, instead developing a non-source-bonded,

abstract sonic palette from wildlife source recordings.

Processing Nature 7

5 References

1. Smalley, D.: Spectromorphology: Explaining Sound Shapes. Organised Sound (2)2, 110

(1997).

2-6. Ibid.

A Musical Score for Csound with Abjad 1

A Musical Score for Csound with Abjad

 Gianni Della Vittoria,

 Liceo Musicale “Canova” di Forlì

giannidellavittoria.audio@gmail.com

Abstract. This paper presents the advantages of using a traditional musical

score to make music with Csound. After illustrating some alternative approach-

es, examines Abjad, a Python library for printing music through Lilypond, and

explains the technique for linking Abjad to Csound. Since in order to compose

a musical score of synthesizers it is necessary to manage complex envelopes,

particular attention is paid to how to represent the envelope profiles of the vari-

ous parameters on a score and how to interpret them in Csound. As the system

is open to several possibilities, the choice is proposed that seems simpler and

allows the user to see the envelope as a musical element to be set on a staff,

providing a better overview of the whole composition.

Keywords: Score, Abjad, Python, Algorithmic composition, Lilypond

1 Introduction

When writing music in Csound, the issue of realizing the score, as it is well known, can

be solved in a vastness of ways. There is a variety of approaches ranging from direct

compilation of the score to the use of third-party software. Each of them has its own pe-

culiarities that can best fit the sometimes opposite preferences of those preparing to

compose music with Csound.

One of the necessities that arise during the creation of an average complex score is to

organize musical events at multiple levels, and not as a simple succession of instances.

Today this is certainly possible with the sole use of Csound, without having to resort to

external tools. One typical arrangement, in this sense, is to write the score to instantiate

instruments which in turn call other instruments according to a specific algorithmic

plan. The score, thus, hosts not so much the "notes", but the musical "phrase". By ex-

tending the principle, the orchestra can organize calls at multiple levels, leaving the

score the task to coordinate the highest level.

There are also a whole series of external programs that deal with the problem of man-

aging music organization levels in very interesting ways, such as Blue by Steven Yi, a

rich environment where it is possible to view series of events arranged on a temporal

plan with the chance of nested levels, or athenaCL by Christopher Ariza, which instead

uses a command line approach to determine series of events according to well-defined

parameter masks with many categories of envelopes.

It is useful to be able to represent the complexity of musical thought in some way, so

as to be able to observe its unraveling over time. In this article I am going to present an -

2 Gianni Della Vittoria

other way to organize and visualize the Csound score, that is, through a traditional musi-

cal score adapted to Csound's needs.

2 Preparing a Musical Score for Csound

Instantiating Csound with a musical score has been done in various ways. One of them

is via MIDI: you create a score with score editing software like MuseScore, extract the

MIDI version and import it into Csound. This mode has various appreciable aspects,

such as the ease with which Csound can be played by connecting each instrument of the

musical score to the desired sound. However, it is not so easy to integrate a mechanism

for transferring the parameter envelopes. How to describe them in a musical score? And

solved this, how to be able to transfer them in real time to Csound, given that Csound

should know in advance where the envelope will end up for at least the duration of the

entire note?

Another way is by using visual programming software such as Open Music or

PWGL. Open Music, for example, has several libraries specifically built to communi-

cate with Csound, but, alongside the wealth of algorithms for processing various musi-

cal parameters, there are constraints such as the difficulty of managing dynamic mark-

ings or other musical symbols.

2.1 Lilypond and Abjad

To get a traditional musical score full of details, Lilypond is certainly an excellent

choice. This software requires ASCII text notation, which is then compiled into docu-

ments such as PDF, PostScript, SVG of acknowledged quality. While remaining faithful

to its textual nature, Lilypond has seen the contribution of various external GUI pro-

grams to facilitate the introduction of musical content (Frescobaldi, Denemo,

Canorus, ...). Furthermore, there are many programming languages that use Lilypond to

visualize algorithmic music. Among them Abjad stands out, an extensive Python library

that allows the user to work with various Lilypond elements implemented in a sophisti-

cated class structure. The advantage of Abjad lies in the fact that the algorithmic com-

position becomes simpler than if you were to create a pure Lilypond text file, being

practically every element manageable with simple class instances.

 Given the richness and the ability to produce very complex graphics, Abjad and Lily-

pond are particularly suitable for the composition of contemporary music; hence the

idea of using these tools in conjunction with Csound.

2.2 From Abjad to Csound

Various ways can be used to connect Abjad to Csound. Here the python ctcsound mod-

ule is taken into account: it allows you to compile csound through a variable containing

the .orc and .sco text.

To show a short example, let's consider a simple orchestra with this beginning of

Csound score

A Musical Score for Csound with Abjad 3

sco_text = ['''
f1 0 8192 10 1 .1 .01 .02 .03 0 0 .01 0 .02 .01 0 .02
; amp midi attack decay pan
i1 0 1 0.5 60 0.01 0.1 0.5
''']

After creating the musical score in Abjad, in which each instr has a dedicated staff like

in a traditional orchestral score, it is necessary to extract the onset, duration and pitch

information relying on the abjad parser, so that it selects the events iteratively, avoiding

rests. The iteration must take place over logical_ties, so as to consider tied notes as indi-

vidual units.

for logical_tie in
abj.iterate(score).logical_ties(pitched=True):
offset = abj.inspect(logical_tie).timespan().start_offset
offset_seconds = 60*offset/(metronome_mark.reference_du-

ration * metronome_mark.units_per_minute)
dur = abj.inspect(logical_tie).duration()
dur_seconds = 60 * dur /

(metronome_mark.reference_duration *
metronome_mark.units_per_minute)
scoLine = ['\ni1 ', str(offset_seconds.__float__()),
str(dur_seconds.__float__()), '.5']
scoLine.append(str(60 + abj.NumberedPitch(logical_tie[0])))

The onset times (p2) are taken from the Abjad inspector through the

timespan().start_offset method, which returns the value in musical figures of duration.

The following line makes the conversion in seconds, taking into account the

metronome. The same procedure is applied to the duration, while the frequency is

drawn from from the NumberedPitch class of Abjad, which is 0 for middle C, 1 for C#,

2 for D and so on. By adding 60 they can be easily intercepted by Csound through the

cpsmidinn opcode.

Finally, the other p-fields are added, which obviously could be freely processed in

python or derived from the abjad score. After calling csound through ctcsound, what

you get is real-time listening and visualization of the score.

2.3 Microtonal tuning

The representation of micro-intonation on a musical score always raises questions that

force us to take sides. The choice of the best notation system depends on the composi-

tional needs and can be quite different from one piece to another.

 Fortunately, the flexibility of Abjad provides the freedom of choice you prefer. A fair-

ly general approach could be the quarter-tone notation, which is easily readable, with

deviations expressed in cents by a small number before the note. This number would

therefore range from +25 to -25 and can be float for fractions of a cent.

4 Gianni Della Vittoria

 Once paired with the Note class, all the python code has to do is parse and convert this

value to a decimal midi note: Csound will take care of the rest (the cpsmidinn opcode is

able to correctly evaluate decimals).

3 Graphical representation of envelopes

Just as in an instrumental musical score it is important to show every detail relating to

the execution of each instrument, to put together a score of synthesizers it is useful to

define the dynamic developments of the various parameters by displaying the envelopes

of the most significant parameters. Defining them only in Csound would require a con-

stant reuse of envelopes with the same number of p-fields, and in any case the fact re-

mains that they cannot be displayed. Not even the Open Music maquette comes to the

punctual clarity that only a musical score can allow. Defining the envelopes in Abjad,

on the other hand, allows them to be diversified for each event and to show them all in a

clear overview.

Also for this there can be various approaches. For example, we could use traditional

dynamic markings, such as pp, mf, crescendo, associating them with certain amplitude

patterns. Alongside the undoubted advantage of easy readability, however, there is the

downside of a reduced number of nuances, compared to the possibilities of a synthesiz-

er. However it would not be bad to employ them in conjunction with other systems.

Another way would be to imitate the envelope profiles of the most popular synthesiz-

er graphics, technically feasible thanks to the powerful PostScript language that Lily-

pond introduced. Here, however, the problem would consist in deciding how to get to

the Csound transcription, which can be solved in various ways, but perhaps a bit cum-

bersome. For example, PostScript uses elegant cubic Bezier curves that could be con-

verted to Csound, but Csound for now only has the quadratic Beziers (GEN "quadbezi-

er") and these do not have the same flexibility as cubic ones.

3.1 Envelopes on musical staves

Perhaps the fastest method to represent complex and articulated envelopes is to use nor-

mal additional staves where for each parameter the profiles will be drawn through

pitched notes. Handling notes and durations is the most natural thing in Abjad and this

would allow for easy algorithmic manipulations. Moreover, it can be interesting to have

an approach of proportional durations definable with rhythmic figures, where more mu-

sical parameters of the same instrument can be easily compared and played with subtle

synchronizations.

 Here we will give an example with a single instrument (FM1) and a single parameter

(the IndFM1 modulation index) for the sake of clarity. Let's start with the orchestra

loaded in ctcsound.
orc_text = '''

sr = 48000
ksmps = 8
nchnls = 2

A Musical Score for Csound with Abjad 5

0dbfs = 1

instr FM
 kamp = .3
 kcps = cpsmidinn(p5)
 kcar = 1
 kmod = .6
 kndx table p4,100; read from Abjad staff “IndFM”
 asig foscili kamp, kcps, kcar, kmod, kndx, 1
 outs asig, asig
endin

instr lin
 kval linseg p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,

p17,p18,p19,p20,p21,p22,p23,p24,p25
 tablew kval, p4, 100
endin
'''

We want to infer the vertices of the envelope for a linseg to handle the modulation index

of the FM from the notes on a specific staff. We establish that the range goes from 0

(middle C) to 20 (C 2 octaves above). Since we do not know a priori how many vertices

the parameter IndFM1 will have for each FM1 instance, we have created an instr "lin"

with a very long p-fielded linseg. If less p-fields are used, Csound actually warns, but

does not protest and this allows us the flexibility to create very different profiles in the

score. This is the starting score.

sco_text = ['''
f 1 0 16384 10 1 ;sine
f 100 0 2048 -2 0 ;only for envelopes
;How score should look like
; channel midinote
;i "FM" 0 5 0 69
; ch linseg_values(no fixed number of pfields)
;i "lin" 0 5 0 1 2.5 20 2.5 1
''']

As you can see from the commented part, each "FM" is activated simultaneously

with its "lin" instr and linked by a unique channel so that while "lin" writes, "FM" reads

the k data. For each new instance of "FM" the reading channel is updated, provided by

ftable 100, so that there is never any interference between any overlapping instances.

The conversion from musical score to Csound happens as follows

channel = 0
instrument_list = ['FM1']
for instrument in instrument_list:
 for logical_tie in abj.iterate(score[instrument]).logi-
cal_ties(pitched=True):

6 Gianni Della Vittoria

 offset = abj.inspect(logical_tie).timespan().start_off-
set
 offset_seconds = 60*offset/

(metronome_mark.reference_duration *
metronome_mark.units_per_minute)
 dur = abj.inspect(logical_tie).duration()
 dur_seconds = 60 * dur / (metronome_mark.reference_du-

ration * metronome_mark.units_per_minute)
 scoLine = ['\n','i

"FM"',str(offset_seconds.__float__()),
str(dur_seconds.__float__()), str(channel)]
 sco_text.extend(scoLine)
 sco_text.append(str(60 +

abj.NumberedPitch(logical_tie[0])))
 #Envelope for IndFM
 sco_text.extend(['\n','i "lin"',

str(offset_seconds.__float__()),
str(dur_seconds.__float__()), str(channel)])
 for segment in

abj.iterate(score['IndFM1']).logical_ties(pitched=True):
 segmentStart =

abj.inspect(segment[0]).timespan().start_offset
 if offset <= segmentStart < (offset+dur):
 value = abj.NumberedPitch(segment[0]).__float__() /

24 # scaled 0 -> 1 between c' c'''
 segmentDur = abj.inspect(segment).duration()
 segmentDur_seconds = 60 * segmentDur /

(metronome_mark.reference_duration *
metronome_mark.units_per_minute)
 scaledValue = value * 20 # scale relative to the

particular parameter
 sco_text.extend([str(scaledValue),

str(segmentDur_seconds.__float__())])
 sco_text.append(str(scaledValue))# last value repeated

 channel += 1
sco_text = ' '.join(sco_text)

As can be seen, the conversions are quite similar to those shown above, but this time the

iteration that inspects the notes-vertices of the IndFM parameter is filtered by the time

window corresponding to the duration of the relative FM1 note. Finally, the rescaling

operated on 24 semitones is spread over a range from 0 to 20.

Notes and final image.

IndFM1staff = abj.Staff("c'4 c'''32 a'8.. a''4. b'8 e'16
g'' b' e'' e'4 c'''32 c''8.. fs'8. c'''16 ", name='IndFM1')
FM1staff = abj.Staff("c'1 cs'2 b'4~ b'4 ", name='FM1')

A Musical Score for Csound with Abjad 7

IndFM envelope

 FM1 base frequency

References

1. Lazzarini, V. et al.: Csound: A Sound and Music Computing System. Springer (2016)

2. Lazzarini, V.: Computer Music Instruments. Springer (2017)

3. Baca L., Oberholtzer J. W., Trevino J., Adan V.: “Abjad: An Open-Source Software System for

Formalized Score Control” in Proceedings of the International Conference of Technologies for

Music Notation and Representation, 2015

4. Oberholtzer J. W.: A Computational Model of Music Composition. Doctoral dissertation, Har-

vard University, 2015

5. Trevino, J. R.: Compositional and Analytic Applications of Automated Music Notation via Ob-

ject-oriented Programming. Doctoral dissertation, University of California, 2013

Modeling of Yamaha TX81Z FM Synthesizer in
Csound

Gleb G. Rogozinsky and Nickolay Goryachev

The Bonch-Bruevich St.Petersburg State University of Telecommunications
gleb.rogozinsky@gmail.com

Abstract. The paper presents authors’ original method of hardware
synthesizers and sound processing devices modeling, focusing on the
Yamaha TX81Z FM synthesizer as an example. The Csound 6 is used for
the software simulation of original TX81Z, which is 4-operator FM syn-
thesizer from 1987, well-known for its peculiar C15 preset called Lately
Bass, and total amount of 8 waveforms. The paper gives a review of the
most prominent FM synthesizers, considering both hardware and soft-
ware implementations, brief description of Yamaha TX81Z features, the
review of modeling method used by authors, and analysis of modeling
results. During the modeling, we measured and modeled DAC unit of
TX81Z to achieve the same waveforms. It was done using MATLAB
Filter Design Tool, prior to code the corresponding pair of LP and HP
filters in Csound. After that step, we modeled oscillators and envelopes.
The given figures show the comparison between original TX81Z recorded
sound samples and ours Csound-based model.

Keywords: sound synthesis systems, modeling, Csound, FM synthesis

1 Introduction

The advanced development of sound synthesis and processing software greatly
contributed to the reduction of corresponding hardware. The noticeable progress
in the field of computer sound has provided software implementations which sur-
pass their hardware counterparts in both sound quality and functionality. At the
same time, the field of electronic and computer music directly a↵ects a number
of creative and aesthetic factors. In the cultural plane, the timbre of the epoch
of electronic music is essential. Thus, the preserving the corresponding electro-
musical instruments and / or their accurate modeling using computer-aided syn-
thesis algorithms are both relevant and topical. The 80s and 90s of the 20th
century were of rather important for the modern timbral landscape of electronic
music. It was during these two decades that a significant number of synthesizers
were released, and the sound of those synthesizers determined the timbral the-
saurus of existing musical styles of electronic music. With detailed study of some
(Yamaha DX7, Roland TB303), the modeling of many other synthesizers is still
on its way to mature. In particular, among the hardware implementations of the
frequency modulation synthesis (FM synthesis) that dominated in the 80s, in

2 AuthorA and AuthorB (or AuthorA et al. if too long)

addition to the well-known Yamaha DX7, later models, such as the TX81Z and
FS1R, to be outlined. The first had defined the bass sound for the Eurodance
style popular in the mid-90s. The existing software models are not widely used
and are being questioned by experts, and besides, the closeness of commercial
software implementations excludes the study of algorithms by experts in the field
of computer music and sound processing.

Thus, one of the topical issues of computer music is the exact (perceptual
and algorithmically identical) modeling of various sound synthesis and process-
ing devices. The article proposes a solution to this issue based on the method
of software modeling of sound synthesis devices, which takes into account the
hardware implementation features (the e↵ect of the synthesizer DAC on the gen-
erated waveform) and examines the generated sound objects in di↵erent time-
frequency sound space planes. The considered method can be applied to various
devices, allowing the possibility of obtaining the frequency response and other
characteristics of the DAC.

2 Prominant hardware and software implementations of
FM synthesis

The digital FM synthesis was first proposed by John Chowning at Stanford
University in 1967-68, licensed by the Japanese company Yamaha in 1973 [1, 2].
The most known hardware implementation of FM synthesis is the Yamaha DX7,
released in 1983. Yamaha stopped production of hardware FM synthesizers in
the early 90s with the transition to the production of multi-functional digital
audio workstations. Currently, FM synthesis is mainly implemented in software
synthesizers, such as Native Instruments FM7 / FM8, Image-Line Sytrus, etc.
At the same time, almost any modern synthesizer features frequency modulation
between (at least) a one pair of generators. Table 1 contains a summary of the
main FM synthesizers in chronological order. Budget analogs of the DX7, i.e.
DX9, DX21, DX27, DX100, FB-01, as well as the corresponding rack versions
like TX7, TX802 were intentionally omitted.

The table shows that the most of FM implementations recreate the features
of the original Yamaha DX7, which confirms the thesis about the relevance of
developing models of other hardware. Much of the existing software models use
closed code. Among the existing open-source DX7 software models, the most
widely known is the Russell Pinkstone's model from Csound Book [3]. Along
with good algorithmic accuracy, the model meanwhile does not take into account
the DAC influence on signal. In addition, no correspondence was made between
the parameters of the simulated Yamaha synthesizer (which are set in the range
from 0 to 99) and real values of one or another quantity.

3 Description of Yamaha TX81Z

The Yamaha TX81Z synthesizer (1987) is a four-operator FM synthesizer in
rack-mounted version. The main di↵erence between TX81Z and others from DX-

Modeling of Yamaha TX81Z FM Synthesizer in Csound 3

Table 1. Basic hardware and software implementations of FM synthesis

Name (Year) Form OPs/ALGs Waveforms Compability
Yamaha DX7 (1983)

Yamaha DX7-II (1987)
Hardware, 61 keys 6 OPs /32 ALGs Sine -

Yamaha TX81Z (1987) Rack module, 1U 4 OPs /8 ALGs 8 waves -
Yamaha FS1R (1998) Rack module, 1U 8 OPs /88 ALGs 8 waves -

NI FM8 (2006) Software plugin 6 OPs /- 32 waves
DX7, DX11

TX81Z
Image-Line Sytrus (2008) FL Studio plugin 6 OPs /- Any -
asb2m10 Dexed (2016) Software plugin 6 OPs /32 ALGs Sine DX7

Hexter (2004) Software plugin 6 OPs /32 ALGs Sine DX7
Arturia DX7 V Software plugin 6 OPs /32 ALGs 25 waves DX7

LoftSoft FMHeaven (2004) Software plugin 6 OPs /- 16 waves DX7, TX81Z
Oxe FM Synth (2004) Software plugin 6 OPs /- 6 waves -

DXi FM (2011) iPad app 4 OPs / 8 ALGs 12 waves -
KQ Dixie (2018) iPad app 6 OPs / 32 ALGs Sine DX7

Primal Audio FM4 (2014) iPad app 4 OPs / 8 ALGs 8 waves -

Yamaha reface DX (2015) Hardware, 37 keys
4 OPs / 12

ALGs
Sine -

Korg Volca FM (2015) Hardware, 15 keys 6 OPs / 32 ALGs Sine DX7

series is the ability to use various waveforms (8 waveforms are used). The most
featured and well-known sound of this synthesizer is the C15 Lately Bass preset,
which can be heard in many compositions of the dance scene of the early 90s. At
the beginning it is necessary to recreate the TX81Z waveform array as accurately
as possible. Figure 1 demonstrates the discrepancy between the ideal waveform
5 and its real form, recorded through a sound card with a sampling frequency of
96 kHz. This discrepancy is due to the non-linearity of the frequency response
of the original synthesizer’s DAC. This leads to modeling the DAC used in the
TX81Z. The measurement of magnitude response was carried for the 1-OP sine
wave mode (Fig. 2) and modeled using Matlab’s Filter Design Tool as a system
of two serially connected low-pass and high-pass filters.

Csound 6 was chosen as the software for real-time sound synthesis. Below
we give an example of the implementation of the corresponding filters in the
form of User-Defined Csound opcodes. The next step to building a model is to
measure the parameters and characteristics of the synthesizer, for example, de-
tune parameters. Most of the TX81Z parameters were manually measured using
time, frequency and phase measuring tools in Cockos Reaper. For cases where
it was possible, some parameter tables were approximated with corresponding
math functions i.e. power of N, others are written directly in ftables as values.

4 AuthorA and AuthorB (or AuthorA et al. if too long)

Time (samples)

300 350 400 450 500 550 600 650 700

A
m

p
it

u
d

e

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

TX81Z
MATLAB

Fig. 1. Comparison of waveforms of type 3 (positive half-period of sine)

Frequency (Hz)
100 101 102 103 104 105

M
ag

n
it

u
d

e
(d

B
)

-16

-14

-12

-10

-8

-6

-4

-2

0

+2

Fig. 2. Measured magnitude response of Yamaha TX81Z DAC

Modeling of Yamaha TX81Z FM Synthesizer in Csound 5

;LP filter

opcode TX_LP, a, a

setksmps 1

aL xin

aD0 init 0

aD1 init 0

iA1 = -0.5100490981424427

iB0 = 1

iB1 = 1

aD2=aD1

aD1=aD0

aD0=aL-aD1*iA1

aout=aD0*iB0+aD1*iB1

xout aout*0.24497545092877862

endop

; HP filter

opcode TX_HP, a, a

setksmps 1

aL xin

aD0 init 0

aD1 init 0

iA1 = -0.99869495948492626

iB0 = 1

iB1 = -1

aD2=aD1

aD1=aD0

aD0=aL-aD1*iA1

aout=aD0*iB0+aD1*iB1

xout aout*0.99934747974246307

endop

UDO opcodes for TX81Z DAC modeling filters.

At the present state, the model implements the generation of all 8 types of
original waveforms as a table oscillators, envelope generators of AR-D1R-D1L-
D2R-RR type and operator connection algorithms (overall to 8 algs). Figures
3 and 4 show the results of the comparison of the original waveforms in the
frequency domain. Figures 3 gives the comparison for only first pair of operators
(OP2 - OP1). Figures 4 gives the comparison for the complete C15 preset, using
4 operators with a feedback on a OP4. Obviously, the operator pair is easy to
model, thus the Csound FM instrument spectrum looks close to the original. The
C15 sound still needs some improvements though hearing tests give promising
results. During the estimation of modeling results we try to compare signals both
in time and frequency domains. Also hearing tests results are considered.

4 Conclusion

The resulting method can be applied to simulate various hardware devices for
the synthesis and processing of sound. The lack of accurate software models of
hardware synthesizers determines the feasibility of continuing such studies. The
method can be especially popular for modeling digital synthesizers - both early
samplers and FM synthesizers of the 80s, and virtual analog devices of the end
of the 90s. At the next stage, we plan to implement the reading of the original
TX81Z presets in MIDI SysEx-format to develop a user interface and conduct
a subjective assessment of the accuracy of modeling. The resulting code will be
compiled as a VSTi / AU plug-in using Csound Cabbage. The project link is
https://github.com/gleb812/cs81z

https://github.com/gleb812/cs81z

6 AuthorA and AuthorB (or AuthorA et al. if too long)

Frequency (Hz)102 103

M
ag

n
it

u
d

e
(d

B
)

-50

-40

-30

-20

-10

0

TX81Z
Csound

Fig. 3. Yamaha TX81Z vs Csound spectra for two operators only

Frequency (Hz)
102 103

M
ag

n
it

u
d

e
(d

B
)

-50

-40

-30

-20

-10

0

TX81Z
Csound

Fig. 4. Yamaha TX81Z vs Csound spectra for the C15 Lately Bass preset

Modeling of Yamaha TX81Z FM Synthesizer in Csound 7

References

1. Chowning, J.: The synthesis of complex audio spectra by means of frequency mod-
ulation. The Journal of the Audio Engineering Society 27(7), 526–534 (1973)

2. Chowning, J., Bristow, D.: FM Theory and Applications by Musicians for Musicians.
Yamaha Music Foundation, Tokyo (1986)

3. Pinkston, R.: A Guide to FM Implementation in Csound. In: R. Boulanger (ed.)
The Csound Book, pp. 261–280. MIT Press, Cambridge (2000)

MIUP Portable User Interface for Music
Example of jo tracker - a tracker interface for Csound

Johann PHILIPPE?

No Institute Given

Abstract. This article presents graphical tools designed to work with
Csound. First section introduces the context in which those tools were
built. Then, second part presents MIUP, an open source graphical library
designed to build audio softwares. Finally, last part describes jo tracker,
a tracker software for Csound built with MIUP.

Keywords: MIUP, IUP, jo tracker, Csound, User Interface, Lua, C++

1 Introduction

In it’s relatively recent relashionship with softwares and computing tools, con-
temporary music has been experiencing many di�culties inherent to preservation
of tools. This is particularly true for mixt and electroacoustic music, which, at
the same time, benefits a lot of those technologies. However, it is harder today
to play a music from the last thirty years than to play some complex musics
from the early 20th century. Most of the time, this di�culty appears when the
electronic part of a music is based on an old program that is no longer working,
or an old Max MSP patcher. In this kind of cases, it is almost an archeological
work to find how was supposed to work this old software, and it becomes longer
to update this program than it was to first create. As it is an important preser-
vation problem, it must be a concern for composers who uses this technologies.
Csound likely stands as the best alternative to this preoccupations, for many
reasons. First, Csound is open-source, so a program could be reconstructed from
scratch. Also, Csound developpers take care of retro-compatibility, which allows
an old program to be played on a recent distribution. Moreover, Csound has an
important community sharing knowledge about sound and music computing. It
is why tools presented in this article are mostly designed to work with Csound,
yet it could work with other audio programming languages.

2 MIUP - a C++ user interface library for music

MIUP stands as portable user interface for music. This is a cross platform
toolkit designed to easily write musical softwares using Csound. It uses IUP
[1], a cross platform C library working with system native interface elements. It

? Thanks to François Roux.

2 AuthorA and AuthorB (or AuthorA et al. if too long)

is fully distributed as source code under MIT license (except a modified version
of CsoundThreaded). MIUP has a few dependencies : all of them are licensed
under MIT. Some of them are included as source code inside the project repos-
itory. Though, a few ones need to be linked to the program in order to work
: the IUP library (all of it, including canvas draw and im), sqlite3, sndfile. Of
course, Csound needs to be linked to the program if it is used as the applica-
tion’s audio engine. MIUP project contains a set of C++ class which describes
useful tools for musical softwares : sliders, levelmeters, spinboxes (...), but also
more complex class like a curve editor, a waveform visualization plot, a code
editor for Csound... MIUP provides a connection mechanism that can be used
to fire callbacks between several objects. It also provides a callback system to
retrieve Csound output channels and display their values inside the interface.
MIUP allows user to take full benefit from Csound with a flexible user interface.
It allows user to write its own widgets, following a simple design diagram. This
library was first written in Lua as a toolkit to write a particular software : the
jo tracker. It has been fully rewritten in C++ to extend its potential to other
softwares.

2.1 MIUP basic functionnalities

IUP C library provides one data type that is used for every interface element :

Ihandle *

The interface element can be initialized like this :

Ihandle *IupButton(const char *action)

It also provides a set of functions that can be used to modify attributes of
interface elements.

void IupSetAttribute(Ihandle *element, const char *name, const char *value)
const char * IupGetAttribute(Ihandle *element, const char *name)

Since every IUP element is of type Ihandle *, users can easily construct some
complex interface architecture, imbricating boxes (layouts) inside other boxes.
MIUP base class MiupObj is a simple C++ wrapper to this C mechanism. It
is recommanded that every MIUP interface element inherits from this class.
The class contains a private Ihandle * that holds a reference to the interface
element, and implements some public methods to modify attributes of the object
:

void setAttr(const char *name, const char *value)
const char *getAttr(const char *name)
Ihandle *getObj()

Every MIUP widget inherits from this base class called MiupObj, and con-
structs the interface element with a di↵erent IUP initializer function. The getObj()

Running Title 3

method returns the Ihandle * pointer. It is a necessary method for every inter-
face element, and it allows a compatibility with the standard IUP syntax. The
Ihandle * element returned by the getObj() method will be the one displayed
in the interface.

2.2 Main Features

Here is a quick list of the available widgets and classes :
-Widgets : button, toggle, sliders, levelmeter, gainmeter, spinbox, matrix
-Plots : curve editor, waveform visualizer (realtime and soundfile)
-Containers : boxes (vertical, horizontal, scrollable), radio...
-Audio : Threaded callbacks, AudioFileReader, CsoundThreaded (slightly mod-
ified)
-Text : Text widget (one line, or multiline), Scintilla editor
-Utilities : filesystem, string conversion, templated print facilities, some data
types, signaled value...
It also contains a set of features, including JSON [5], Signal and Slot [4] used
to connect objects, and a thread safe callback mechanism for Csound control
channels.

2.3 Code Examples

Any MIUP program must contain at least a call to Miup::Init() at the begin-
ing, and Miup::MainLoop(), Miup::Close() at the end. Creating a widget can
be as simple as :

Slider<double> sl(-90,-90,6,0.01,"HORIZONTAL");
LevelMeter<double> lv(-90,-90,6);
Button but("PLAY"); // creates a button displaying "PLAY"

Widgets can be pushed inside containers like this Vbox vbx(&sl,&lv,&but);.Then,
the final container must be pushed in a new dialog.

Dialog dlg(&vbx);
dlg.show();

When their internal callback is triggered (like button click), Widgets emits sig-
nals that can be connected to any function or method with the same signature.
For example, we could do :

sl.valueChangedSig.connect(&lv,&LevelMeter<double>::setLevelMeter);

This would update level meter value to slider value. If the signature is di↵erent,
the connect method can also be called with a lambda as argument. It allows to
connect one signal to multiple actions in one statement.

CsoundThreaded cs;
sl.valueChangedSig.connect([&cs](double val){cs.setChannel("gain",val);});

4 AuthorA and AuthorB (or AuthorA et al. if too long)

This would send the slider value to Csound as a control channel when it changes.
Interface can also be refreshed with Csound control output control channels. This
functionnality works by passing a std::function as argument to CsoundThreaded
pushMethodCallback method. It can be done using lambdas, or std::bind.

cs.pushMethodCallback("level",[&lv](double val){lv.setLevelMeter(val);});

Internally, Csound will look the ”level” channel value at k-rate, and push the
lambda and the value in a queue. The queue is then processed in the Miup::MainLoop()
function. This part of the work benefits from the great work of Michael Gogins
on CsoundThreaded [2], which has been slightly modified to perform those call-
backs.
Example MIUP Simple program playing a sine

3 J tracker - a tracker interface for Csound

Tracker softwares, also called soundtracker, are musical sequencers which tracks
are based on a grid. Users can write values in the grid, corresponding to syn-
thesizers instructions. Those are often MIDI instructions (note, velocity), that
can be added to some basic controls on the note (pan,delay...). Sequencer starts
at the top of the grid, and iterates over each line, before reaching the last one.
Soundtrackers can be thought as step sequencers with an improved writing pre-
cision. This kind of software was very popular in the 1990’s. Today, only a few
of them are still under active development, including Renoise and OpenMPT.

Fig. 1. jo tracker version 2 (JPG).

Jo tracker is a tracker interface for Csound. Inspired by Renoise, it’s intention
is to mix editing ease of tracker softwares with synthesis precision of Csound.

Running Title 5

It can be used to generate some precise sound sequences and to write electronic
music. Its first version was a Max MSP patcher. Though, the software span
quickly required to be thought as an independant software, so it needed to be
based on a real programming language. The second version was written with Lua
(using IUP for user interface and Terra as a low level programming language for
C libraries). This version is far more e�cient, really quicker than the first one.
Though, the codebase wasn’t easy to read, and so, was hard to maintain. In order
to distribute a clean version of jo tracker and MIUP, third version of jo tracker
and second version of MIUP are both fully rewriten in C++, with improvements
and some new features. It is a necessary work for further developments.

3.1 Base and principle

First requirement of jo tracker was to provide a track system, with tracks able
to manage an infinite number of parameters. With this feature, one line on a
track is equivalent to one csound score ”i” statement. This allows to combine or
choose between very descriptive scores and algorithmic orchestras. Each track is
shown as a spread sheet (See Fig. 1), where each column index corresponds to its
Csound equivalent p-field. Eeach track can contain a di↵erent number of columns
according to the needs of the instrument. Tracks number of lines and columns
can vary between two sequences. Though, the number of lines in a sequence is the
same for every track. In order to allow users to write some sequences, the tracker
implements the notion of sequence : a sequence is equivalent to a time section in
Csound. It’s an abstract concept that can be thought as a time item containing
score data. The main tab also contains one particular track : the tempo track.
It can be used to do some tempo interpolation, or to instantaneously jump
to another tempo. Obviously, jo tracker provides some facilities such as copying
any sequence’s data to another sequence, cleare data, save a project (in a human
readable text file), export a CSD file.

Fig. 2. Curve editor (JPG.

6 AuthorA and AuthorB (or AuthorA et al. if too long)

Second tab (See Fig. 2) is dedicated to GEN routines editing. It contains
three major elements :
- A curve editor, allowing user to draw curves that will be translated in the
GEN16 syntax.
- A waveform plot, mostly used to display waveforms from samples used as
GEN01 data.
- Another spread sheet which function is to describe some other GEN routines
data (simple arrays in GEN02, synthesis waveforms in GEN10).

There are three modes for starting Csound inside jo tracker. Each mode
generates a csound score, composed with one t statement (tempo track), multiple
(many) i statements, and some f statements corresponding to GEN editors data.
The main and first mode is activated by clicking the ”Play” button. It triggers a
call to Csound C API which starts a performance in realtime mode. The second
mode (Record button) triggers a realtime recording of the current project. It
is mostly useful if the orchestra is used with input channels or any realtime
external device. It records the project into a stereo WAV file. The last mode
calling Csound API acts as a non-realtime renderer, which also creates a stereo
WAV file. It can be activated by clicking the ”Render Stereo” item in ”Files”
menu.

3.2 New features, and upcoming improvements

Jo tracker’s third version brings a set of new features, allowing for a more flex-
ible use. Though, since third version is still under development, some of these
features are not ready yet.
-An embedded code editor for Csound orchestras. It allows user to write orch-
estas directly in the software. It provides syntax highlighting, autocompletion.
It also calls the Csound API function EvalCode to check whether current in-
strument uses valid Csound syntax. On success, it registers the instrument in a
database.
-Curve editor now supports spline mode (GEN08) and bezier quadratic curves
(GENquadbezier)
-A new editor allowing user to manage sequences order and number of loops.
As such, it can be considered as a meta editor allowing to manage the general
shape of a composition.
-Record and render modes are now available for multichannel audio files
-Tracks are connected to a macro system, based on Csound powerful macro sys-
tem.
-An audio device list is already implemented and will be added to the parameters
menu

As future improvements, both MIUP and jo tracker could benefit from Eric
Wing’s work [3] to port IUP on new platforms : MacOSX, Android, iOS, andWeb
browser. Since a lot of musicians use MacOSX as their composing environment,
this target is considered as the major one.

Running Title 7

4 The References Section

References

1. IUP Tecgraf Puc site, https://www.tecgraf.puc-rio.br/iup/
2. Csound Github site, http://csound.github.io
3. Eric Wing Github site, https://github.com/ewmailing?tab=repositories
4. cpp11nullptr Github site, https://github.com/cpp11nullptr/lsignal
5. Niels Lohmann Json project Github site, https://github.com/nlohmann/json

https://www.tecgraf.puc-rio.br/iup/
http://csound.github.io
https://github.com/ewmailing?tab=repositories
https://github.com/cpp11nullptr/lsignal
https://github.com/nlohmann/json

Red-Tratos 1

Red-Tratos. Visual Art and Sound Art for the Web

Emiliano del Cerro1

1 Universidad Alfonso X el Sabio
ecerresc@gmail.com

Abstract. "RED-TRATOS" is a work made for the web and is hosted by the
CVC (Cervantes Virtual Center) belonging to the Cervantes Institute, an
institution dependent on the Spanish Government. RED-TRATOS was
designed as a mix of visual poetry and as Sound Art. The central part is
dedicated to Cervantes and has audio files attached to the visual poem and
plays with the name of Cervantes and with phonemes and syllables derived
from his name.The work was a pioneer in the field of interactive sound art and
visual art and was a key piece in the combination of both worlds for the net
(net art).This paper will explain how the project was developed with
information on the technology used in the digital signal process as well as the
software needed to carry out the work. The main audio application used for
audio was Csound, as well VRML, CORTONA, and Softimage for the visual
aspects of the work.

Keywords: shynthesis, random distribution, net art, sampling,..

1 Introduction

Red-tratos is a visual and sound work made with visual poems by Eduardo Scala, about
authors from the world of universal culture of different nationalities and from different
periods of time.
 The central part is dedicated to Cervantes, and has several visual poems made by
Scala about the author of Don Quixote.
 Within this section dedicated to Miguel de Cervantes, there is a hypermedia work,
made with poems, and with music composed, recorded and made by the author of this
paper.
 The work has had the collaboration of Miguel Martin who has made the technical part
derived from the completion of the work for placement in the network.
 Red-tratos is immersed in the website of the Cervantes CVC Virtual Center, for its
vision and listening throughout the world network through the World Wide Web.
 The two authors have extensive experience in visual arts and sound art and their
works have been presented at international institutions around the world.

2 Emiliano del Cerro

2 Music, Sound, Poetry

This central part dedicated to Cervantes has a sound attached to the visual poem and
plays with the name of Cervantes and with phonemes and syllables from its name. The
piece is divided in three parts.

The musical part operates as an hypermedia exposition and has 3 parts in which
visual poetry and sound art are mixed:

• Cube. Cervantesmirror
• Cervantesphera
• Finicio

2.1 “Cube. Cervantesmirror”
This section called "Cervantesmirror", "Cube", consists of a new verbal game where

the signifier provides several multidirectional variations of the name of Cervantes,
located on the six faces of a cube in motion.

This movement plays with aspects in 3D, and has interactive possibilities: the music
includes new elements that change with the movement of the mouse.

2.2 "Cervantesfera"
The central part is the fundamental sound part in this work. This section has three parts:

• Black Tone on White,
• White Time on Black, and
• Gray Folia

2.2.1. Black tone on white
The first part of "Cervantesfera" is linear and the music follows the visual exposition of
the poem.

Figure 1 is an example of this first movement of Cervantes sphere.

Fig. 1. Examples of the section Cervantes sphere.

Red-Tratos 3

2.2.2. White time on black,
It constitutes the second part of "Cervanstesfera"and introduces visual aspects in 3D,
and the cube and sphere form appear.
 Figure 2 is an example of the visual part of Cervantesfera's second movement.

Fig. 2. Example of the section Cervantes sphere

2.2.3. "Gray Folia",
The third part of the movements of this musical work, "Gray Folía" is an invitation to
walk through the "RED-TRATO" and allows an internment in the most hidden angles of
the fascinating typography that composes the picture.
It is an interactive game that has visual aspects in 3D and musical aspects that follow
the movement of the viewer depending on the movement of the cursor on the computer
screen.

In this third part, the name of Cervantes is written with fonts of the same historical
period of the author of Don Quixote: Paull Renner. The sound files change according to
the movement of the text and the place where the viewer places the computer mouse

The computer has several sensors on the computer screen allowing the user, to move
between syllables, phrases, and even enter inside the fonts with which the name of
Cervantes is written.

Figure 3 is an example of Gray Folia.

Fig. 3 Example of section Cervantes sphere.

4 Emiliano del Cerro

2.3 “Finicio”.“A – Z”
The sound part ends with a section called Finicio. A-Z
It is a metaphor for the beginning and the ending, that allows a kind of timeless

meditation.
Figure 4 is an instantaneous snapshot of this section..

Fig.4 Example of the section FINIZIO

3 Realization

The technical part of this work can be addressed as visual art, sound art, and
Interactivity.

3.1 Visual Art

The visual part has been made with Photoshop, Maya, 3d MAX, Softimage Autodesk.
This type of software has allowed the visual process of static image and it gives the

possibility of animation and movement in different sections of this work.

3.2 Sound Art

 The audio part of this web page, has had several phases that have consisted in
Recording, Edition, Sound synthesis.
pure sine waves, filtered white noise,Synthesized guitar and recorded files are processed
using DSP and subsequently mixed and compressed for distribution on the network.

3.3 Interactivity section. Gray Folia.

The last part of Cervantesfera, Gray Folia, has been made with a special program for
Virtual Reality, called VR Cortona.
 VR Cortona has a free viewer, which must be loaded on the computer, to be able to
make use of all the possibilities that this Folia offers Virtual Reality with Screen
Sensors.

Red-Tratos 5

4 Csound

RED-TRATOS uses Csound as the only tool for the synthesis and DSP of the audio
part in this piece.
The piece is based on two techiniques Recording and fragmentation, and synthesis.

4.1 Recording and Reproduction of Audio Files

Red-tratos uses a fragmentation of sound and image. This process is generated for a
sentence of cutting phrases and words into phonemes and syllables.
 The voice sound came from a recording of the voice of Eduardo Scala reading the
poems by Miguel de Cervantes.
 These audio sources are processed as sampling sources, by cutting and distributing
the samples into the piece.

 a1, a2 bbcuts asource1, asource2, ibps, isubdiv,
ibarlength, iphrasebars, \

 [, istutterspeed] [, istutterchance] [, ienvchoice]

 After the cutting and fragmentation of sonorities, the sonority is produced by means of
stochastic probabilities, (Gauss, …)

 a1 randh xamp, xcps [, iseed] [, iuse31]
 a1 gauss 1

the sound recorded is distributed with somne techniques of cut and shuffle with forms to
play forward backward

 a1 Soundin "speech1.aif", 0
 a1 Loscil

the reading process came from the reading from a table

 a1 tableshuffle ktablenum
 a2 tableshufflei itablenum

 giBuffer ftgen 0, 0, 2^17, 7, 0; table for audio data
storage

4.2 Shynthesis of Sound Files

The synthesis process try to imitate a possible sonority derived from the time in which
Cervantes lived.
 The basic material is derived from recorded voice, sinusoidal sound, guitar like
synthesis, and percusive sound from white noise source.
 The main ideas came from pure sinusoidal sound with some modulation.

6 Emiliano del Cerro

 The guitar that remembers the vihuela sonority from the renaissance period in the
Spanish tradition of instrumental music. The synthesis came from a mix of Karplus
Stong Algoritm and Waveguide shinthesis.

Karplus strong
 ares pluck kamp, kcps, icps, ifn, imeth [, iparm1] [,
iparm2]

The percussion sonority produced with noise source with some filtering for change the
timbre properties of the sound, to imitate different instuments.

4.3 Interactivity

There are also a part of the piece that have an important interactivity property.
 The user can move the mouse and listen and see different parts of audio file.
 The image is designed as a 3D picture and the user can move around and inside the
image in order to have the illusion of a travel inside the visual poem.
 In the last section, the interactivity produced with cortona is associated with csound.
The user can control, with the mouse, the space (stereo) distribution of the samples and
the production of the sound into different sound planes. To have a similarity with filmic
planes (plane, general, …)
 a1, a2 space asig, ifn, ktime, kreverbsend, kx, ky
 ktime
 line 0, 5, 5
 a1, a2 space asig, 1, ktime, ...

5 Conclusion

The work presented in this article involved an effort of collaboration between a plastic
artist, father of the original idea, together with a composer and a technical team for the
realization and representation of images and sound in a hypermedia and interactive
page.
 Its place of presentation, and of vision and listening is a primordial and a preferential
form, in a browser for the web. This work has been hosted in the CVC network.
This fact, period of time, together with a high number of visitors, gives validity and
relevance to these RED-TRATOS.
 The work could be seen and represented in a real space, such as a space belonging to
a museum, art gallery, or physical space where a technologically complex installation
such as RED-TRATOS is allowed.
 A problem related to this type of presentation, is associated with the inexorable
passage of time and possible obsolescence of technology, so it is necessary to update
software and hardware everytime this possibility becomes a reality.
 As in other disciplines, the passage of time has given a validity to this presentation
that has gained over the years. In the same way, this passing of time offers an extra
patina to the work.

Red-Tratos 7

References

Boulanger, Richard, ed.. The Csound Book: Perspectives in Software Synthesis, Sound Design,
Signal Processing, and Programming. MIT Press. (2000)

Dodge, C., Jerse, C.: Computer Music: Synthesis, Composition and Performance, 2nd edn.
Schirmer, New York (1997)
Lazzarini, V. et al.: Csound: A Sound and Music Computing System. Springer (2016)
Lorrain, D.: A panoply of stochastic ‘cannons’. Computer Music Journal 4(1), 53–81 (1980)
Moore, F. Richard Elements of Computer Music Prentice Hall. Englewood Cliffs 1990
Risset, J. C “An Introductory Catalogue of Computer Synthesized Sound . MIT pPess 1971

http://csound.github.io
http://cvc.cervantes.es/actcult/redtratos/webflash/papeles.pdf

Implementing Arcade by Günter Steinke in
Csound

Daria Cheikh-Sarraf, Marijana Janevska, Shadi Kassaee, and Philipp Henke ?

1
Incontri - Institut for contemporary music at the HMTM Hannover

2
FMSBW

incontri@hmtm-hannover.de

Abstract. This paper is about the process of implementing the live-

electronics of the solo cello and electronics piece ”Arcade” by Günter

Steinke. We will discuss problems that occurred during the process of

implementation and how we approached the transfer of the electronic

procedures that were originally on big hardware machines to the Csound

programming environment. The main focus of this paper also discusses

the possibilities of the Csound FrontEnd CsoundQt, that we mainly used

for the performance with its GUI capabilities.

Keywords: CsoundQt, Live-electronic, Instrument, Hannover, Incontri,

FMSBW, Günter Steinke, Arcade

1 Introduction

Back in the time of 1992, the German composer Günter Steinke begun work
on a piece which was to become his cello and live-electronics piece. He couldn’t
have known that much of the equipment he was using in the Freiburger Ex-
perimentalstudio would soon become obsolete. As time passed, the computer
became increasingly accessible, convenient, and powerful. A piece which would
have required truckloads of equipment before could now be realized in a small
machine, namely the notebook. Powerful programming languages like Csound
made it possible to realize the needs of a piece like Arcade and to create a so-
phisticated version which is purely software-based. In this paper, we will describe
the process it took to realize a complex piece like Arcade in Csound and how
we dealt with other implementations of the piece in other music-programming
languages like Pure Data and Max/MSP.

2 Speakers and Microfon

In Günter Steinke’s Arcade, the cello, played live, should be amplified in addi-
tion to the electronics. To achieve and maintain a good balance in the overall
volume, we used two microphones for the performance at the Sprengel Museum

?
Without the help of Joachim Heintz this would not have been possible.

2 D. Cheikh-Sarraf, M. Janevska, S. Kassaee, P.Henkel

in Hannover. Firstly, the Shure microphone: the advantages of this microphone
is its consistent cardioid characteristic, which should reduce feedback, and an
optimum transmission range for drums, percussion and instruments, which is
good for the pizzicati in the cello part. However, due to the weight of the coil,
the Shure microphone sometimes sounds sluggish, especially the high frequency
response, which may sound a bit covered. And secondly, the DPA microphone:
the DPA microphone is well suited for instruments. It is clear, clean, and has a
high-resolution. In this piece, the cello has a wide dynamic range. For example,
there are very quiet passages (see min. 09:00) of sul ponticello or pianississimo,
but also loud, dominant pizzicato parts (see min. 05:02), which sound very per-
cussive and present a strong contrast. It was often necessary to emphasize the
above-mentioned passages manually by amplifying the input of the cello, i.e. how
much came into the microphone or the two microphones. For the pizzicato parts,
we had to amplify especially the Shure microphone precisely for the percussive
parts. However, this could have been automated in order to avoid supposedly
minor errors.

3 Electronics and Problems of Implementation

Steinke’s Arcade uses a wide array of di↵erent electronic procedures. He uses dif-
ferent modules like, pitch-shifting, Halafon, delay-lines, noch weitere hinzufügen!!!
Since 1992, Arcade has been translated for the computer. The first computer
realization was made with the programming language Max/MSP in 2000. An-
other significant implementation has been made for the Pure Data programming
environment by Orm Finnendahl, which was realistically, a translation of the
Max/MSP implementation. Analyzing all the implementations from the past,
there is no denial that each of the implementations had to deal with problems
of translation from hardware to software. One of the first tasks was to analyze
the possibilities of the Csound programming language, in order to avoid creating
a PD version in Csound, but rather a native Csound implementation using the
power of the Csound programming language.

3.1 Analysis

One of the first pitfalls to avoid when confronting an implementation is to re-
sist direct translation e.g. between PD-Objects and their Csound equivalents.
Oftentimes, one finds a similar opcode of the same name in Csound. However,
it should be noted that one has to first look at the specific functionalities of the
opcode, like the quality of the filter, and the order of the bandpass filter used.
While analyzing the Max/MSP and PD versions, one notices that both patches
do not actually use a filterbank like in the original realisation of Arcade, they
used stations of spectral masks done with ↵t, to create a similar sound to the
original filterbaks. However, this would contradict our approach and goal of a
Csound native implementation which is true to the orginal realisation, proposed
in Steinke’s score. Consequently, we sought solutions dealing with the wide array

Implementing Arcade 3

Fig. 1. Example of the notation in Steinke’s Arcade

of filters that the Csound programming environment has to o↵er. Visually, the
biggest di↵erence one finds when working on an implementation is that Steinke
used an analog matrix (Koppelfeld during the premiere of the piece. Because
the matrix is so essential to the functionality of the piece, Max/MSP and PD1

come with their respective matrix applications, whereas in Csound, a text-based
programming environment, one has to build the matrix to work while also using
the GUI possibilities of CsoundQt to make it more useable in the performance
situation.

Example of the Matrix in Csound

/*** MATRIX SETTINGS ***/

instr Mtx_1

puts "Mtx_1", 1
chnset 1, "show_mtx"

ga_Harm_in = ga_Del_out
ga_Chn1_in = ga_Harm1A_out
ga_Chn2_in = ga_Harm1B_out
ga_Chn3_in = ga_Harm2A_out
ga_Chn4_in = ga_Harm2B_out

4 D. Cheikh-Sarraf, M. Janevska, S. Kassaee, P.Henkel

ga_Chn5_in = 0
ga_Chn6_in = 0
ga_Filt_in = 0
ga_Rev_in = 0
ga_HalaA_in = 0
ga_HalaB_in = 0
ga_HalaC_in = 0
TurOffOtherMtxs gS_Mtxs, "Mtx_1"

endin

instr Mtx_2

puts "Mtx_2", 1
chnset 2, "show_mtx"

ga_Harm_in = ga_Del_out
ga_Chn1_in = ga_Harm1A_out
ga_Chn2_in = 0
ga_Chn3_in = 0
ga_Chn4_in = ga_Harm2B_out
ga_Chn5_in = ga_Harm2A_out
ga_Chn6_in = ga_Harm1B_out
ga_Filt_in = 0
ga_Rev_in = 0
ga_HalaA_in = 0
ga_HalaB_in = 0
ga_HalaC_in = 0
TurOffOtherMtxs gS_Mtxs, "Mtx_2"

endin

Example from the Csound implementation of Arcade by Günter Steinke. In creating
a hybrid gui application handling the matrix fucntion for us, we found a con-
vinient way to solve the problems concerning the realisation of Steinke’s analog
Koppelfeld.

3.2 Filters

An important aspect of our implementation is that we did not use ↵t to recreate
a sound emulation sounds of the premiere, but instead implemented Csound na-
tive filters to patch the piece. It has been the first realization since the premiere
that uses true filter processing instead of spectral masks done in former imple-
mentations. In the process of programming the filters, we made a long process
testing out the di↵erent filter opcodes in Csound. The filters are a crucial part of

Implementing Arcade 5

Fig. 2. Example of the Widget view of our implementation (PNG).

the piece, in particular the way the piece sounds, for that we had to understand
after what sound the composer is after. We decided to choose the mode filter
opcode, because it could produce a very transparent and resonant sound com-
bined with the cello. However there was an argument concerning the stability of
the opcode and the advantages of using the reson filter over the mode filter.
Implementations of the original filter modules

/*** FILTER ***/

instr Filt_Seq_1

kndx init 0
kTime init 0
kFiltSeq[] = gk_Filt_Seq_1
iFirstProg = 1
if kTime <= 0 then
event "i", "ReadFiltProg", 0, 0, iFirstProg+kndx
kTime = kFiltSeq[kndx]
kndx += 1
if kndx == lenarray(kFiltSeq) then
printks " Filt_Seq_1 turned off\n", 0
turnoff
endif

endif
kTime -= 1/kr
endin

6 D. Cheikh-Sarraf, M. Janevska, S. Kassaee, P.Henkel

instr Filt_A

iBand = p4
S_chnl sprintf "Filt_A_%d", iBand

//midi pitch one tone below the first band
iBasPch = 34
iQ = 1

iFreq mtof iBasPch + iBand*2
kDb chnget S_chnl
kDb port kDb, gi_Filt_FadeTim
aFilt mode ga_Filt_in*ampdb(kDb), iFreq, iQ

chnmix aFilt, "filt_A_collect"

endin

Example from the Csound implementation of Arcade by Günter Steinke.

4 Performenace Situation

In the case of Steinke’s Arcade, not only the electronics and amplification played
an important role. In the original score, the ”programs” indicate which e↵ects
are triggered and which cello parts are recorded and edited with filters, delays
etc. In our Csound version, the so-called ”cues” always have sections that have
been recorded through the microphone, which can be activated and stopped,
e↵ects being played on them and previously recorded patterns repeated. The
di�culty was to activate the cues at the right moment. In certain places, for
example where a delayline of the cello should be played back through the speakers
which then would occur at the same time with the live cello, one has to be as
precise as possible. No sounds or noises appearing too early or too late should be
allowed into the triggered cue, since they could partly pull through the delays
and through the whole piece, which would be a major disruptive factor. It is
even more important not to leave everything to technology and to operate the
cues and mixers by ourselves, as any performance of the live cello could vary in
speed. It is a great help at particularly critical points in the play to agree with
the player on assignments, so as to adapt the cues to the live cello as precisely as
possible. Since this piece, and this is what makes it so special, even one wrongly
timed cue can be heard as an error in the process of the piece. That is why one
has to be precise with the triggering of the programs/cues.

4.1 Summary

Csound together with it’s frontend CsoundQt provide sophisticated means to
implement complex sounds and structurs into a simple and easy to use per-

Implementing Arcade 7

formance enviroment. As a text-based programming enviroment, csound is also
easy on the CPU and can handle di�cult calculation tasks, like multiple filter
layers and harmonizer layers as well as complex spatialisation. However where
Csound shines the most is it’s tonal flexibilities and wide array of opcodes that
help to shape the sound in many di↵erent ways. The csound frontend CsoundQt
proved to be very useful in the performance situation, concerning the capability
to use the widget to control the parameters of the electronic in realtime in a
convenient way.

References

1. Heintz, J. et McCurdy, I.: Csound Floss Manual. Creative Commons Attribution

2.5 (2015)

2. Lazzarini, V. et al.: Csound: A Sound and Music Computing System. Springer (2016)

3. Steinke, G.: Arcade für Solo Cello und Live-Elektronik. Boosey and Hawkes (1992)

4. Csound Github site, http://csound.github.io

http://csound.github.io

Improving Csound’s Ambisonics decoders

Pablo Zinemanas1, Mart́ın Rocamora1 and Luis Jure2 ?

1 Facultad de Ingenieŕıa
2 Escuela Universitaria de Música

Universidad de la República
lj@eumus.edu.uy

Abstract. This paper describes the e↵orts we devoted to improve Am-
bisonics decoders in Csound. Current version of the existing opcode,
namely bformdec1, has some limitations that should be surpassed in or-
der that the decoders better fulfill the Ambisonics criteria. In particular,
the implemented decoders have no near–field compensation and do not
use a di↵erent decoding matrix for low and high frequencies. These issues
are addresses in a new implementation of the opcode, namely bformdec2,
that also adds some features, such as additional loudspeaker array con-
figurations (rectangle, hexagon) and a binaural output for headphones.

Keywords: Ambisonics decoder, HOA, Csound

1 Introduction

Ambisonics is a spatial sound metatheory (a theory of theories) for audio record-
ing, coding and reproduction, developed by Michael Gerzon in the 1970s [4]. It
provides a method of codifying physical properties of a sound field (the pressure
and velocity components), that captures directional information of the sound
sources, and enables its accurate reconstruction in a point in space.

Unlike traditional multichannel audio for spatialization in which each chan-
nel corresponds to a given loudspeaker, the Ambisonics sound format—called
B-format—contains a speaker-independent representation of a sound field. By
means of an appropriate decoder, i.e. matched to the geometry of the loudspeaker
array, this sound file can be played back in di↵erent speaker layouts [2].

The channels of the B-format file can be regarded, from a theoretical perspec-
tive, as the coe�cients of a series expansion of the sound field around the origin,
in terms of spherical harmonics [2,9]. The spherical harmonics are a complete
set of orthogonal functions on the sphere, and thus can be used to represent
functions defined on the surface of a sphere.

The order of the series expansion determines the number of channels involved.
Thus, zeroth order Ambisonics represents the omni–directional component of the
sound field and corresponds to the the sound pressure, which consist of one single

? This research was partially funded by Comisión Sectorial de Investigación Cient́ıfica,
Universidad de la República, Uruguay. We thank Aaron Heller for his advise.

2 Pablo Zinemanas, Mart́ın Rocamora, Luis Jure

channel (the W channel). First order Ambisonics adds three directional compo-
nents (channels X, Y and Z), corresponding to the pressure gradient and rep-
resenting the acoustic velocity. Higher order Ambisonics (HOA) add additional
coe�cients to the series expansion, corresponding to higher order derivatives of
the sound field [9]. Increasing the order of the series expansion provides better
approximation of the sound field, which leads to increased spatial resolution.

2 Ambisonics decoding

The decoder has to provide suitable linear combinations of the B-format signals
for each loudspeaker in the array, so that the pressure and particle velocity is
reproduced correctly at the listening position, i.e. the centre of the array. The set
of coe�cients needed to produce that linear combination is called the decoding
matrix. The number of loudspeakers must be at least the number of the B-
format signals [8]. There are essentially two di↵erent approaches that can be
adopted: the basic (or physical)3 decoding and the energy (or psychoacoustic)
decoding [9]. It turns out that the basic decoding achieves accurate perception
of spatial localization only at low frequencies, where as the energy decoding
provides optimal localization only for high frequencies. For this reason, a better
approach consist in using di↵erent solutions for low and high frequencies.

2.1 Physical decoding

The basic decoding seeks the reconstruction of the sound field, up to a given
Ambisonics order, from the superposition of the sound waves emitted by the
loudspeakers, assuming phase coherence among the signals [9]. In essence, the
solution of the decoding equations corresponds to the projection of the spherical
harmonics to each of the directions of the speakers. In most cases the number
of speakers is greater than the number of Ambsionics channels, which yields
an under-determined system of equations whose solution can be obtained with
algebraic methods (pseudo-inverse). For regular speaker arrays the problem is
well–conditioned and the method will result in a correct solution. For irregular
arrays the solution could be still obtained with algebraic methods but the prob-
lem is often ill–conditioned, making the obtained solution inappropriate.4 The
basic decoding succeeds at reproducing the impression of sound source locations
only at low frequencies (approximately below 500 Hz), and close to the center
of the loudspeaker array [9,2]. For higher frequencies or a large listening area it
is better to use a psychoacoustic decoder.

2.2 Psychoacoustic decoding

The psychoacoustic decoding aims at reproducing the original energy and acous-
tic intensity of the sound field, assuming an incoherent sum of the speakers

3 Other names are used to refer to this decoding solution, such as exact or velocity.
4 Although there are several proposals to deal with irregular arrays, this still remains
as an area of open research [9,5].

Improving Csound Ambisonics decoders 3

signals [9,2]. By incoherently summing the signals of several loudspeakers it is
physically impossible to exactly reconstruct the acoustic intensity, so the decoder
will instead try to maximize a statistical estimator of the signal energy. In the
case of regular (or semi-regular) speaker arrays it is possible to obtain the energy
decoder by altering the coe�cients of the basic decoder matrix.

The in-phase decoders additionally impose the restriction that no loud-
speaker emits in opposite phase [9]. This provides more robust localization for
listeners who are far from the center of the loudspeakers array.

2.3 Dual–band decoding

Given that no decoding approach is adequate for both high and low frequencies,
many Ambisonics decoders split the B-format signals into (at least) two bands
and use independent solutions for low and high frequencies [2]. Then the output
of each band is recombined to produce the audio signals for the loudspeakers. It
is important to note that the band–splitting filters must be carefully designed
to preserve the magnitude and phase response of the signal [8]. Besides, when
combining the output of each band, di↵erent criteria can be used to deal with the
signal’s level di↵erence between the low and high frequencies, such as preserving
the amplitude, the root–mean–square RMS level or the total energy [8].

2.4 Near–field compensation

Another important aspect of an Ambisonics decoder is to provide near–field
compensation [3]. The recreation of the sound field at the central position holds
under the hypothesis that the wavefronts are planar. Given the finite distance to
the loudspeakers, the sound wavefronts at the listening position present instead
a curvature, which produces a bass–boosting e↵ect that has to be compensated.
The compensation is essentially a high–pass filter, which depends on the order of
reproduction and on the distance of the loudspeakers to the center of the array.

2.5 Criteria for correct Ambisonics decoding

In summary, as suggested in [8], apart from having a decoding matrix matched
to the geometry of the loudspeaker array, we focus on the following key aspects
for correct Ambisonics decoding:

– dual–band decoding (high and low frequencies) using phase–matched filters
– near–field compensation, implemented as a high–pass filter.

These features are not provided in the Ambisonics decoders currently available
in Csound, so they are addressed in a new opcode implementation.

4 Pablo Zinemanas, Mart́ın Rocamora, Luis Jure

3 Current Ambisonics decoders implementation

Ambisonics decoders in Csound are implemented in the bformdec1 opcode.5

There are five loudspeaker layouts available: stereo, quad (2D square), 5.0, oc-
tagon and cube. Given the constrain on the number of loudspeakers for a given
Ambisonics order,6 all decoders are first–order, except for the octagon layout,
which provides first–, second– and third–order decoders, and the 5.0 which has
first and second order. It is important to note that the decoders are of the in–
phase type—the same decoding matrix used in low and high frequencies—and
without near field compensation.

4 New Ambisonics decoders implementation

The new implementation of the Ambisonics decoders, namely bformdec2, focus
on providing dual–band decoding and near–field compensation. It is designed
with backward compatibility in mind, so it o↵ers the same loudspeaker layouts
available in bformdec1. Besides, some additional loudspeaker array configura-
tions are provided, including a binaural output for headphones.

4.1 Dual–band decoding

The decoders implemented are dual–band, providing a di↵erent decoding matrix
for low and high frequencies. The band splitting filters are designed to be phase–
matched, as described in [8] and explained below.

Phase–matched dual–band splitting filters The dual–band splitting is ob-
tained by combining two second order–filters, a low–pass and a high–pass filter,
that are phased matched. The phase match is achieved by reversing the phase
response of the high-pass filter in order to match that of the low-pass filter. The
two filters acting together give a first–order all–pass filter [8,6].

The filters are implemented as infinite–impulse response (IIR) filters, as,

H(z) =
b0 + b1z

�1 + b2z
�2

a0 + a1z
�1 + a2z

�2

Coe�cients ai are calculated by:

a1 =
2(k2 � 1)

k2 + 2k + 1
, a2 =

k
2 � 2k + 1

k2 + 2k + 1

for both filters, whereas bi coe�cients are:

b0 =
k
2

k2 + 2k + 1
, b1 = 2b0, b2 = b0,

5 There is a deprecated opcode, namely bformdec, which was tested in [8].
6 For an Ambsiconic order l, (l+1)2 loudspeakers are needed for full–sphere systems,
and 2l + 1 for horizontal–only reproduction.

Improving Csound Ambisonics decoders 5

for the low-pass filter and

b0 =
1

k2 + 2k + 1
, b1 = �2b0, b2 = b0,

for the high-pass filter; and k = tan
⇣
⇡

fc
fs

⌘
, where fc is the splitting frequency

and fs is the sampling rate [8].
The filters of the bformdec2 opcode are implemented by the Direct-Form II,

using a similar code to that of the filter2 Csound’s opcode algorithm. The
splitting frequency can be selected by the user, and its default value is 400 Hz.

Low– and high–frequency balance Starting from the basic decoding matrix,
which is used for the low frequencies, the decoding matrix for the high frequen-
cies is obtained by applying a set of coe�cients, as explained in [7]. Di↵erent
criteria can be used to balance the gain between low and high frequencies. By de-
fault, bformdec uses conservation of total energy, but via an optional parameter,
any of two additional methods can be selected: preservation of the amplitude,
and preservation of the root–mean–square (RMS) level. The coe�cients are com-
puted using the Ambisonics Decoder Toolbox7 (ADT) [7,5].

4.2 Near–field compensation

The near–field compensation is achieved through the high–pass filters proposed
by [3], following the implementation described in [1] and the code provided by
ADT [5,6]. The order of the compensation filters corresponds to the Ambisonics
order. The current implementation of bformdec2 allows for near–field compen-
sation of decoders up to order five. The user can set the distance to the speakers
as an input parameter, and can also disable the near–field compensation.

4.3 Loudspeaker layouts and binaural output

The decoders implemented in bformdec1 are hard–coded, that is, each decoder’s
data is fully embedded into the source code. In contrast, the implementation of
bformdec2 was designed to be modular, so that, from a decoding matrix for
the basic solution and some input parameters, a set of functions compute the
decoding solution. This o↵ers some flexibility for the addition of loudspeaker
layouts, even from a decoding matrix supplied by the user.

Current implementation of bformdec2 provides the same layouts available in
bformdec1, for backward compatibility. The additional loudspeaker arrays im-
plemented so far are horizontal–only, namely hexagon and rectangle (for di↵erent
length–to–width ratios). A binaural output for headphones is also provided.

The binaural output, up to third–order Ambisonics, is obtained through a
two–step process. First, the input signal is decoded to a virtual loudspeakers

7 https://bitbucket.org/ambidecodertoolbox/adt/

https://bitbucket.org/ambidecodertoolbox/adt/

6 Pablo Zinemanas, Mart́ın Rocamora, Luis Jure

array (octagon for horizontal–only, and dodecahedron for full–sphere). Then,
we compute the convolution of the signal of the loudspeakers and head–related
transfer functions (HRTFs) corresponding to the direction of the virtual loud-
speakers. The sum of the obtained signals yields the binaural output for head-
phones. The implementation of the HRTF convolution is based on the code of
the hrtfstat opcode, and the set of HRTFs used is already available in Csound.

5 Discussion and conclusions

The implementation of a new opcode for Ambisonics decoding is released8 that
aims to remedy the lack of dual–band decoding and near–field compensation of
the previous implementation. The opcode o↵ers some backward compatibility
and the option to try out the best decoder for one’s particular needs, through
parameters set by the user (e.g. band splitting frequency, disable near–field com-
pensation). Ultimately, the most appropriate decoder may depend on the sound
source material and the intended use, for instance, the size of the loudspeaker
array and the listening area. In the future, the opcode will include more loud-
speaker layouts and the option to use a decoding matrix specified by the user.

References

1. Fons Adriaensen. Near Field filters for Higher Order Ambisonics. online, accessed
29-Oct-2018, https://kokkinizita.linuxaudio.org/papers/hoafilt.pdf.

2. Jérôme Daniel. Représentation de champs acoustiques, application à la transmission
et à la reproduction de scènes sonores complexes dans un contexte multimédia. PhD
thesis, Université Paris 6, 2001.

3. Jérôme Daniel. Spatial sound encoding including near field e↵ect: Introducing dis-
tance coding filters and a viable, new Ambisonic format. In Proceedings of the
Audio Engineering Society (AES) 23rd International Conference: Signal Processing
in Audio Recording and Reproduction, May. 2003.

4. Michael A. Gerzon. General Metatheory of Auditory Localisation. In Proceedings
of the Audio Engineering Society (AES) 92th Convention, Mar. 1992.

5. Aaron Heller and Eric Benjamin. The Ambisonic Decoder Toolbox: Extensions for
partial-coverage loudspeaker arrays. In Linux Audio Conference (LAC), May. 2014.

6. Aaron Heller and Eric Benjamin. Design and implementation of filters for Ambisonic
decoders. In Proceedings of the 1st International Faust Conference (IFC), Jul. 2018.

7. Aaron Heller, Eric Benjamin, and Richard Lee. A toolkit for the design of Ambisonic
decoders. In Linux Audio Conference (LAC), Apr. 2012.

8. Aaron Heller, Richard Lee, and Eric Benjamin. Is my decoder Ambisonic? In
Proceedings of the Audio Engineering Society (AES) 125th Convention, Oct. 2008.

9. Davide Scaini and Daniel Arteaga. Decoding of higher order ambisonics to irregular
periphonic loudspeaker arrays. In Proceedings of the Audio Engineering Society
(AES)55th International Conference: Spatial Audio, Aug. 2014.

8 Available at https://github.com/pzinemanas/bformdec2.

https://kokkinizita.linuxaudio.org/papers/hoafilt.pdf
https://github.com/pzinemanas/bformdec2

Preliminary study for a chorus opcode

Daniele Cucchi and Stefano Cucchi

I.T.B. Project Studio

d cucchi 1976@yahoo.it
s.cucchi@itbprojectstudio.com

Abstract. In this paper we submit the hypothesis of a new “chorus”opcode

in Csound. We wrote a simple program in Octave language witch gen-

erate random values read by Csound in a further step. These values are

used to modify the original playback speed of a audio file. Good choice is

to use white sequence of uniform distribuited samples filtered by 1-pole

system to obtain low-pass behaviour. Some considerations about ampli-

tude distribution of results and proposals to manage it will be done.

Keywords: Chorus, New opcode, Asynchronous playback, Variable de-

lay, Random speed, Random, Noise.

1 Introduction

One of the main features of computer music is the “perfection”of synthetized
sound and music in terms of intonation, timing, waveforms, etc. . . Avoiding any
kind of aesthetic judgement, there are many cases in which we want add some
imperfection to the sound in order to make it more “real”and, maybe, pleasant
to the ears. There are many ways to obtain the same results, tipically using
through noise. The idea of this paper is to analyze some aspects of the noise
”opcodes” and of introduce an alternative form of it.

2 The “noise”opcode in Csound

In Csound there is an e↵ective “noise”opcode with a IIR lowpass filter.

Yn =
p
(1� �2) ⇤Xn + �Y(n�1) (1)

The b (kbeta value in the score) determines the filter’s cuto↵ frequency. According
to the di↵erents values of kbeta the behavior of the noise can vary from oscillation
around a value to a kind of “drift”similar to the loss of intonation typical of
analogic instruments. The a-rate noise can be used in association with the couple
phasor - tablei in order to have subtle changes in speed, or downsampled to a
k-rate signal to achieve little fluctuation of volume or intonation.

Asimptoticaly, the values of Y are distribuited like a gaussian, so it means
that not all possible values are extracted with the same probability. Moreover
the maximum values reached depends by the length of the sequence: the longer

2 Daniele Cucchi and Stefano Cucchi

the sequence then more possibility you have to extract higher values. This is not
a real problem with the most part of applications but sometimes could be useful
to have a major control of amplitude distrubution.

Fig. 1. original opcode

The figure 1 is the histogram distribution obtained by invoking noise opcode
with parameter b of value 0.9.

3 The first modified noise generator

We define T (threshold) as the maximum admitted value for the sequence. So
we modify the original equation as below:

W =
p

(1� �2) ⇤Xn + �Y(n�1) (2)

Yn = min(|W |, T) ⇤ sign(W) (3)

With this form of recursive formula we have the assurance that no value has
module greater than T.

The figure 2 is the o obtained histogram distribution with T=0.7. It’s clear
that this simple algorithm is not the optimal one cause it create artificial and
unwanted excess of extracted samples with value T.

Chorus 3

Fig. 2. 0.7 threshold

4 The second modified noise generator

The kernel of evolution is the well kown equation.

W =
p
(1� �2) ⇤Xn + �Y(n�1) (4)

If abs(W) is smaller than T nothing happens, otherwise some bounce back
from threshold is implemented. The Octave code describe one of possible imple-
mentation of this bounce.

As expected there are no peaks of distribution around T visible in figure 3.

4.1 Octave Code

Here Octave code used to generate random sequences

Octave code

clear

close all

rand("seed",32);

standard_T = 0;

wrapped_T = 1;

T = 0.7;

4 Daniele Cucchi and Stefano Cucchi

Fig. 3. 0.7 advanced threshold

nomefile="random_y";

L = 200000;

beta = 0.9;

x = rand(1,L);

x = x-0.5;

base = 0;

for k =1:L

passo = x(k)*sqrt(1-beta*beta);

old_base = base;

base = base*beta+passo;

if wrapped_T == 1

if base > T

passo = passo - (T-old_base);

base = T - passo;

end;

if base < -T

passo = passo - (-T-old_base);

base = -T - passo;

end;

end;

Chorus 5

if standard_T == 1

if base > T

base = T;

end;

if base < -T

base = -T;

end;

end;

y(k) = base;

endfor;

4.2 Csound code

Here the Csound instrument used to test some sequences. This code use the
input sequence to vary the playback speed of an audio file, but it’s only one of
the possible utilizations.

Csound code

<CsOptions>

</CsOptions>

<CsInstruments>

sr = 44100

kr = 4410

ksmps = 0

nchnls = 2

0dbfs = 1

strset 1, "sinusoide.aif"

instr 1

iformat1 = 7

iprd1 = 0.08

kveldev1 readk "random_y", iformat1, iprd1

Sfile strget p4

aoriginal diskin2 Sfile, 1

achorus1 diskin2 Sfile, 1 + (kveldev1*p5)

outch 1, aoriginal

outch 2, achorus1

endin

</CsInstruments>

<CsScore>

i1 0 10 1 0.99

e

</CsScore>

6 Daniele Cucchi and Stefano Cucchi

</CsoundSynthesizer>

5 Conclusions

We described two variation of original noise opcode which give us an adjoint
parameter controlling the dynamic of the system and can be useful when it’s
important to limit the maximum module of the sequence. Probably to really
arrive to define a new opcode would be necessary a more depth study about
control of amplitude distribution. It should be interesting investigate also the
combination of di↵erent e↵ects varying b and T parameters.

References

1. �tch, J.: A look at Random Numbers, Noise, and Chaos with Csound. In: R.

Boulanger (ed.) The Csound Book, pp. 321–338. MIT Press, Cambridge (2000)

2. Csound Github site, http://csound.github.io

http://csound.github.io

Digital Signal Processing Techniques Used to
Model the Ibanez Tube Screamer Guitar Pedal

Rory Walsh1 and Conor Walsh2

Dundalk Institute of Technology

Abstract. This paper aims to provide a basic overview of methods used

in replicating analogue distortion units, using the Csound audio program-

ming language. A key focus will be on the TS- 9 Tube Screamer (TS)

analog overdrive guitar pedal by Ibanez. Although lacking in the com-

plex theoretical analysis seen in typical digital audio e↵ects papers, it

is hoped that enough information is provided for beginners who wish to

begin their own journey into the world of digital emulations of hardware

devices.

Keywords: Csound, Analogous Distortion, Emulation

1 Introduction

Distortion e↵ects can be traced back to the mid 1960s. For decades they have
played an important role in the sound of electric guitars within popular music.
Such e↵ects are based on non-linear distortion of the signal path and can be
thought of as wave-shaping circuits. Digital imitations of these analog proces-
sors have appeared in many di↵erent forms. Certain emulations aim to directly
copy a particular analog circuit to replicate its exact behaviour [1]. However,
the likelihood of exactly replicating the device chosen for this research is quite
low considering the complexity of the device itself. This paper merely looks at
methods that could potentially be used to emulate the unit using simplified
models.

2 Ibanez Tube Screamer

The TS overdrive e↵ects pedal is produced by Ibanez. It is known for its light
distortion, similar to the sound produced from overdriven tube amplifiers. The
TS pedal di↵ers from other overdrive pedals on the market due to its unique
compression of the waveform, resulting in very little loss of the original signal
and capable of creating a full sounding blues tone. Unlike many overdrive pedals,
the TS generates symmetrical soft clipping of the incoming signal [2]. Other
overdrive pedals available on the market, such as the Boss SD-1, contain similar
asymmetrical waveform clippings, which in turn result in a tube-like overdrive
[3].What the TS actually does is overload the amplifiers preamp circuit with
artificial gain. When the preamp gain is turned up on an amplifier, the TS
saturates the signal, creating a full, overdriven tone.

2

Fig. 1. TS-9 Tube Screamer [4]

2.1 Schematic Breakdown

There are various schematics of the TS available online. ElectroSmash provides
the most accurate layout, therefore, it will be the primary reference [5]. This
analysis is split into three sections: Input/output bu↵ers, the clipping stage and
tone/volume stage. A full schematic is provided below in Figure 2.

Along with the symmetric clipping, the TS also provides a unique mid fre-
quency boost. A characteristic associated with the low pass filtering stages of
the circuit.

Fig. 2. Tube Screamer schematic [5]

3

2.2 Csound Implementation

The main features to focus on regarding the TSs unique characteristics are its
overdrive and tone controls. Various types of wave-shaping transfer functions
were researched during the implementation stages of this research, along with
low pass filtering opcodes such as moogladder, butterlp and tone. Ultimately,
the use of a tanh transfer function [6], along with basic tone controls seemed to
be the most suitable combination of processes needed to approximate the sound
of the TS.

A simplified implementation using the tanh transfer function and tone low
pass filter opcode has been provided below. This example uses a GEN04 table
to analyse the transfer function and create a complimentary normalised table
which is used to scale the output.

<CsoundSynthesizer>
<CsOptions>
-odac
</CsOptions>
<CsInstruments>
; Initialize the global variables.
sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1
gifn1 ftgen 1, 0, 4097, "tanh", -180, 180
gifn2 ftgen 2, 0, 1024, 4, 1, 1
instr 1
a1, a2 diskin2 "samples/02_C_Note_DI.wav", 1, 0, 0
;high pass filter all frequencies above 720 mid-hump

aHp butterhp a1, 1220
;low pass all frequencies below mid hump frequency
aLp butterhp a1, 1220
;apply distortion to frequencies above mid-hump only
aDist tablei (aHp+1)/2, gifn1, 1
kScl tablei 1, gifn2, 1
aDist = aDist*kScl
;apply low pass filter to distorted signal
aDist tone aDist, 3090
;sum distorted signal with original low pass filtered signal
aDist = aDist+aLp
outs aDist, aDist
; fout "FinalImp.wav", 4, aDist*.5, aDist*.5
endin
</CsInstruments>
<CsScore>

4

;starts instrument 1 and runs it for a 3 seconds
i1 0 3
</CsScore>
</CsoundSynthesizer>

The high pass and low pass filters in this code are used to split the signal
chain in the same way the TS does. The higher frequencies are passed through
the distortion chain, whilst the lower frequencies remain unchanged. Figure 3
displays the similarities between the original TS signal and the Csound emu-
lation. The lower frequencies in the spectrum show a good likeness, whilst the
higher frequencies seem to tail o↵ a lot faster in the Csound emulation than
the TS. Modifying the filters cut o↵ frequency will help to alleviate this, but it
involves a little tweaking.

To gain easier control of the output signal, the final implementation features
a set of graphical controls that users can use to tweak aspects of the instruments
output. Users can also choose between tanh clipping, or extreme hard clipping.
It is possible, with some basic experimentation, to dial in a tone that sounds
quite close in timbre to the original TS guitar pedal.

Fig. 3. Spectral analysis of the Tube Screamer (left), tanh function and tone low pass

3 Conclusion

The focus of this paper is on simple methods that can be used in emulating
the output of the Tube Screamer distortion pedal. In many ways it represents
quite a naive approach, considering little or no consideration was given to the
possibility of aliasing or other complex side-e↵ects of wave-shaping with complex
sound sources. Regardless, a combination of a tanh transfer function and basic
tone controls seem to work quite well as basic tools for emulating the Tube

5

Screamer. This can be largely attributed to the symmetric form of clipping they
produce.

The use of analog electronic circuit simulators such as the SPICE programme
[7] were investigated early on during this research. While the ability to emulate
schematic circuity provides an interesting pedagogic insight, a full exploration
of this tool was far beyond the scope of this research.

The combination of ctcsound [8] and Scipy [9] also proved to be very useful
in the explorations of both the original and emulated signals. The ability to
forensically plot pressure and frequency graphs proved invaluable. That being
said, it is important to keep in mind that the human ear also plays an significant
role in DSP emulation, and is summed up nicely by George Massenburg, who
states that A DSP engineer with very good ears generally does better than the
guy staring at MATLAB emulations. [10]

References

1. Timoney, J., Lazzarini, V., Gibney, A. and Pekonen, P. (2010). Digital Em-

ulation of Distortion E↵ects by Wave and Phase Shaping Methods. [ebook]

Maynooth, Ireland: Maynooth University, pp.1,2,3. Available at: http://
eprints.maynoothuniversity.ie/4116/1/dafx-distortion-final.pdf [Accessed

Feb. 2019].

2. Keen, R. (1998). The Technology of the Tube Screamer. [online] Geofex.com. Avail-

able at: http://www.geofex.com/article_folders/tstech/tsxtech.htm [Ac-

cessed 16 Jan. 2019].

3. Piera, M. (n.d). Boss OD-1 Overdrive Mods. [online] Analogman.com. Available at:

http://www.analogman.com/od1.htm [Accessed 16 Apr. 2019].

4. Gig Gear (n.d.). TS-9 Tube Screamer. [image] Available at: https://giggear.co.
uk/buy/ibanez-ts9-tube-screamer-pedal [Accessed 16 Apr. 2019].

5. Rodriguez, J. (2012). ElectroSmash - Tube Screamer Circuit Analysis.

[online] Electrosmash.com. Available at: https://www.electrosmash.com/
tube-screamer-analysis [Accessed 13 Jan. 2019].

6. Lazzarini, V. (2009).Distortion Synthesis. [online] Csoundjournal.com. Available

at: http://csoundjournal.com/issue11/distortionSynthesis.html [Accessed 7

Feb. 2019].

7. Koren, N. (2003). Improved Vacuum Tube Models for SPICE, Part 1. [online] Nor-

mankoren.com. Available at: http://www.normankoren.com/Audio/Tubemodspice_
article.html [Accessed 24 Apr. 2019].

8. https://github.com/conorwalsh182/ConorWalshCsound/blob/master/README.
md

9. Scipy.org. (2019). SciPy.org SciPy.org. [online] Available at: https://www.scipy.
org [Accessed 16 Aug. 2019].

10. Lambert, M. (2010). Plug-in Modelling —. [online] Soundonsound.com. Avail-

able at: https://www.soundonsound.com/techniques/plug-modelling [Accessed

25 Apr. 2019].

http://www.geofex.com/article_folders/tstech/tsxtech.htm
http://www.analogman.com/od1.htm
https://www.electrosmash.com/tube-screamer-analysis
https://www.electrosmash.com/tube-screamer-analysis
http://csoundjournal.com/issue11/distortionSynthesis.html
https://github.com/conorwalsh182/ConorWalshCsound/blob/master/README.md
https://github.com/conorwalsh182/ConorWalshCsound/blob/master/README.md
https://www.scipy.org
https://www.scipy.org
https://www.soundonsound.com/techniques/plug-modelling

Synthesis by Parametric Design 1

Synthesis by Parametric Design

Simone Scarazza

Abstract. As a composer I started my research aiming at developing a

relationship between the graphic elements and the sound ones. Particularly I

focused on the possibility to employ in the sound synthesis, processes and

concepts belonging to Parametric Design used in computer graphics. Thanks to

this study I built up a kind of library consisting of several models useful for the

composition and source of stimulus to master the research toward a graphic

approach. In this paper it will shown an example trough Csound.

1 Introduction

In the digital environment the beginning of the Parametric Design dates back to 1963

when Ivan Sutherland, conceiving the Sketchpad the forerunner of Graphical User

Interface, introduced new functions in order to create in the patterns, variable and

scalable geometries.

Compared to Computer-Aided Design (CAD), the software supporting Parametric

Design allows to represent and produce models that, thanks to the synchronism of the

parameters, they may grow and can be modified as organisms.

One of the best known software for parametric design is Grasshopper, a visual

programming language and environment developed by David Rutten at Robert

McNeel & Associates, that runs within the Rhinoceros 3D computer-aided

design (CAD) application.

Today the use of graphical digital interfaces and the manipulation of the codex have

deeply penetrated the designer expressive language and creative concept. It cooperates

in finding solutions in which assisted design doesn't merely consist in supporting its

production but it permits to bring new possibilities of useful interacting for the

customization of the project and helps to overcome its limits.

2 Sound Synthesis and Graphic Sign

Sound synthesis and graphics have had many points of contact since the beginning of

their history. One of the first was "Graphic 1" developed by William Nike in the Bell

laboratories in 1961. It is a hardware and software system started for engineering

purposes, which was employed by Max Mathews, combined with "Music IV", in order

to be able to define sound parameters graphically.

2 Simone Scarazza

Another important informatics tool to be mentioned is UPIC (Unité Polygogique

Informatique CEMAMu) realized by Iannis Xenakis in 1977. UPIC allows to translate

drawings, realized with an electromagnetic pen on an electromagnetic board, into music.

Once the drawing has been digitized it is interpreted by computers which combine

the graphic form with specific frequency and duration parameters. For example the

drawing of an ascending trait corresponds to an ascending glissando.

3 General Description

In order to use Parametric Design as a technique of sound synthesis it has been taken the

same model implemented by Xenakis with the UPIC, where in a graphic drawing,

definite in a Cartesian coordinate system, the abscissa indicates the time and the

ordinate the frequency.

To convert graphic elements, placed in a Cartesian coordinate system into the

parameters to generate sound synthesis, the same will be realized in an unit

square, (Fig.1) that is a square consisting of the points where both x and y lie in a

closed unit from 0 to 1.

In this way, once calculated starting, duration and frequency of the lines, these values

can be sized according to the compositional needs of duration, minimum frequency and

band-width indicated in the note-statment of the score.

Example

istart = Ax
idur = Bx - Ax
ifreqA = Ay
ifreqB = By

------- note statement ------------------------
p1 p2 p3 p4 p5
 Min.Freq Band-width
I1 2 10 100 300

Fig. 1 - Unit Square

Synthesis by Parametric Design 3

 ------- sizing --------------------------------
inotestart = p2 + (p3*istart)
inotedur = p3 * idur
inotefreqA = p4 + (p5*ifreqA)
inotefreqB = p4 + (p5*ifreqB)

In Parametric Design one of the most interesting topic to deal with using generative

algorithms are geometric patterns. Basically their construction in digital domain results

very simple, but the combination between different patterns allows the realization of

very interesting shapes.

In the Csound’s example that follows, the graphic shape used is composed by the

construction lines of Bézier curves.

In this case the shape has been used to create additive synthesis, but in other cases it

can be used to control any other parameter of a synthesis algorithm, such as the

frequencies of a filter bank, FM parameters, or in granular synthesis, speed, volume,

and frequency of grains.

4 Implementation

For the realization of the Csound program we need to start from a graphic model to

understand how to automate the generative process. (Fig.2)

Fig. 2 - graphic model in a Cartesian coordinate system

4 Simone Scarazza

As shown the drawing is mirrored on the x-axis so, in the first step, it is possible to

consider only the positive plane to implement the algorithm. The graph shows a n num-

ber of poly-lines1 that have an ascending direction to the middle of the diagram and a

descending direction until their end. Each poly-line respect to the previous one has an

increase in glissando frequency of a certain step, a delayed start of a certain step and a

proportionally decreasing duration.

Thus, it is possible to implement the algorithm creating an iterative structure.

The program is based on two instruments that work together: instrument 1 generates

the control parameters for instrument 2 that contains synthesis algorithm.

Instrument 1 will be implemented by a loop (loop_it opcode), which will be

iterated according to n number of required poly-lines. The Loop will iterate n times

mathematical calculation between the initialization variables and a step value in order to

generate a note-list for instrument 2.

In the note-statement of the score file, that calls instrument 1, P4 will indicates the

global amplitude, P5 the central frequency, P6 the band-width and P7 the number of

the poly-lines.

Inside the algorithm, P7 plays a key role: it will indicate the number of called

instances of loop, it will divide the global amplitude to share it on each poly-line

and it will define the steps values (istpx,istpy) that are inversely

proportional to P7.

Instrument 2 contains the control variables for the glissando, an anti-foldover logic

filter, an amplitude envelope, two sinusoidal oscillators and a DC filter.

The control variables for glissando are two: one for the positive plane, that sums the

central frequency with the band-width and one for the negative plane, that subtracts the

central frequency with band-width. In this way the drawing will be mirrored.

If the note-list, generated by instrument 1 has negative frequency values, the

anti-foldover logic filter avoids this problem bringing them to 0Hz. Consequently to

eliminate the 0Hz, at the end of the audio process, another filter has been implemented

with the dcblock2 opcode.

Example of Program Code

<CsoundSynthesizer>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 1
0dbfs = 1

instr 1 ;--

istart = 0
idur = 1 ; duration
ibw = 0

1 poly-line in computer graphics is a continuous line composed of one or more line segment

Synthesis by Parametric Design 5

inop = p7 ; number of poly-line
istpx =.5/ inop ;(1/p7)*0.5
istpy = 1/ inop ; 1/p7
;--- Event note --------------------------------------
ieamp = p4 / p7 ; Amp / number of poly-line
iefreq = p5
iestart = 0
iedur = p3
iebw = 0 ; band-width

event_i "i",2,iestart,iedur,ieamp,iefreq,iebw

;--------- loop parameters ---------------------------
indx = 0 ;
incr = 1 ;
inumber = inop ; number of iterations
;---
sequence: ;loop start process

ibw = ibw+istpy ; band-width
iebw = ibw*(p6*.5) ; sizing

event_i "i",2,iestart,iedur,ieamp,iefreq,iebw

istart = istart+istpx ; starting point
iestart = istart*p3 ; sizing
idur = idur-(istpx*2) ; duration
iedur = idur*p3 ; sizing

loop_lt indx,incr,inumber,sequence ;loop
 endin

instr 2 ;--

 idur = p3
kglis linseg p5, idur*.5, p5+p6, idur*.5, p5
kglisneg linseg p5, idur*.5, p5-p6, idur*.5, p5

;------- Anti-foldover filter -----------------------
if (kglisneg <= 0) then
 kglisneg = 0
endif
;--
kenv linseg 0,idur*.5,p4,idur*.5,0

a1 poscil kenv, kglis, 1
a1n poscil kenv, kglisneg, 1

 aout sum a1,a1n

6 Simone Scarazza

adcb dcblock2 aout ;------ DC filter -----------------
 out adcb
 endin
</CsInstruments>
<CsScore>
f1 0 4096 10 1

; P1 P2 P3 P4 P5 P6 p7
i 1 3 30 0.5 2000 3000 10

</CsScore>
</CsoundSynthesizer>

5 Conclusion

In this example an essential program has been realized to clarify as much

as possible its working logic but it is possible to obtain substantial transformations

adding p-fields, that will intervene on loop parameters; or applying in instrument 2

whatever synthesis technique on the oscillators used for the sound generation.

Working with this kind of program it's possible to create morphologies which

possess their own consistency because parametric software permits their adaptive

management and to control, through tiny parameters, a great amount of data.

The use of Parametric Design to generate control parameters, provides an interesting

alternative to the most used technique by generation of data trough random

distributions.

My next step will consist in developing a collection of User Defined Opcodes in

order to be able to easily recall each algorithm and interface it with the others.

Fig. 3 - Spectrogram of the sound file written by the program

Synthesis by Parametric Design 7

References

1. Gérard, Ma., et al.: The UPIC System: Origins and Innovations. Prospectives of New Music

Vol.31 No.1, 258-269 (1993)

2. Jabi, W.: Parametric Design for Architecture. Laurence King Pub (2013)

3. Woodbury, R.:Elements of Parametric Design. Routledge (2010)

4. Lazzarini, V. et al.: Csound: A Sound and Music Computing System. Springer (2016)

	
	
	
	
	
	
	
	
	
	

iVCS3 CV Files & Programming 1	
	

iVCS3 Programming & The Repurposing of
Audio Files To Carry Control Voltage Levels.

	
	

Author: James Edward Cosby	
	

jamesedwardcosby@jecdesign.com	
	

Abstract…

1. To Show how CV Signals can be encoded using Audio Samples and stored

within a standard “.wav” File to be used to expand the sonic possibilities
of iVCS3 and equivalent hardware…

2. To show Examples of iVCS3 Programming including the transmission
 of CV Signals over Audio busses within iOS showing the Control of		
 another iSO Synth using APEMatrix for the audio bus connection.
 Show the use of CV Audio Files to add highly programmable enveloping
 to iVCS3 patches…

Keywords: iVCS3, Control Voltages, Audio Files, Sound Design, Modular Synthesis.

	
	

The Author…	
	

The author has over forty years of experience in hardware analogue synthesis and around thirty
years of experience with analogue/digital hybrids and FM. His other credits include 1980’s 8-bit
game design primarily on Z80 platforms at an Assembler Level and including Graphic and Sound
Design. In addition to iVCS3 the author has recently contributed presets to several iOS Software
Synths including Audio Kit Synth One and D1.

	
	

1 CV Changes over Time, Encoded using Audio Samples.	
	

Consider the similarity between Audio Signals and Control Voltage Signals...
Both are Bi-Polar Voltages which change over time… Thus it follows that both
can be represented digitally and stored for subsequent replay at will.

In the case of an LFO CV Signal, this can be simply represented by an audio wave
with a cycle frequency in the sub audio range..

Fig1.

	
	
	
	
	
	
	
	
	
	

iVCS3 CV Files & Programming 2
	

In the case of an Envelope, the perceived change in amplitude over time of any given
sound wave can also be represented by samples in the same way…

First, consider Fig 2. a simple Sine Wave upon which an Amplitude envelope is applied
resulting in a Percussive Transient…

The Perceived Rise and Fall of Amplitude over Time (Envelope), shown in Fig 3. can be
shown by considering the “Absolute Values” of the Sampled Waveform…

Thus, as shown below in Fig 4. The Perceived Envelope can be represented by digital
samples which can therefore be stored in a standard “.wav” or other format “Audio” file.
This “Audio” file can then be processed using existing subroutines and used to Modulate
any desired parameter…

	
	
	
	
	
	
	
	
	
	

iVCS3 CV Files & Programming 3	

Loading into iVCS3 to Modulate Parameters…

Once loaded into iVCS3’s Sampler Module using the Folder Icon, in this case, Fig 5, the file is
loaded into Channel 2, various parameters can be set to refine the modulation effect…
“Rate” will adjust the duration of the modulation, (the rates of both sampler channels can also
be synchronised to each other). The “Mix” parameter will adjust level balance between the sample
file and the incoming iPad audio bus. For a stereo file, the “L/Mix/R” switch assigns which stereo
channel(s) of the file are used. The “Off/DK/Seq” switch selects the Retrigger Mode, i.e. simple
continuous loop or Dynamic Keyboard/Midi Note Triggering or Internal Sequencer Note Triggering.
A portion of the file can also be selected using the Crop Icon.

Fig 5. CV Envelope Loaded into iVCS3

Once the CV File is loaded to the desired Sampler Channel, the signal will be present at the
Matrix… Row 8 for Input Channel 1 and Row 9 for Input Channel 2. This Signal can be attenuated
using the Input Channel Level Parameter Knobs and thus setting the “Amount” of modulation applied
to the destination parameter. The example in Fig 6. shows a basic playable patch with Osc 1&2
patched through the Filter and Trapezoid to the Outputs. Both Osc 1&2’s Frequencies are modulated
by the DK which is routed through Input Channel 1. The loaded CV Envelope File is patched from
Input Channel 2 to modulate the Filter Cutoff Frequency and synchronised to trigger with a DK/Midi
Note.

Fig 6. Example CV File Filter Modulation

This results in much greater dynamic possibilities than are otherwise achievable, indeed, the idea has
been tested and found to work well on the original hardware using a synchronised sample player and
transmitting the CV Files over an audio bus. The idea has also been tested using the iPad internal audio
busses allowing successful modulation control of one modular synthesiser from another.

	
	
	
	
	
	
	
	
	
	
	

iVCS3 CV Files & Programming 4	
	
	
	

2 Video Presentation using iVCS3 as the prevalent sound source	
	

Show a video of the re-created 1960’s Dr Who television theme using iVCS3 as the main
sound generator synchronised to the original black & white recursive graphics…

	
	
	

3 iVCS3 Programming Examples and using Audio CV Files.	
	

This section of the presentation to include a short description of iVCS3’s modules and
their peculiarities and will be an open Q/A discussion on iVCS3 / VCS3 programming,
including a breakdown of some patches used in the aforementioned theme…

Available Topics to Include…

The Matrix, direction of signal flow, touching on Pin values and Meter.

Oscillators 1, 2 & 3… and their waveforms, briefly describing their hardware voltage
control specifications and how this relates to Pin & DK settings for equal temperament.

Ring Modulator… functionality, “Differential” output and how this can be used to
alter the amplitude of signals including use of the Joystick to generate a “bowing” effect.

Filter… Parameters including Ladder & ZDF_Diode selection, “Slew” and “Saturation”

AHDR Trapezoid Envelope Shaper… covering Decay Modulation, Looping, CV and
Signal Paths

Spring Reverb… Level, Mix Modulation and Settings.

Noise Generator… Colour and Level Parameters and S&H / Glide Modes

Output Filters… Twin Dual Low/High Pass Filters

Joystick and Range Parameters… Covering Modulation possibilities and demonstration of
special values / calculations for Octave and Note transposition and OSC3/Filter DK Tracking.

Output Channels 1 & 2… Level Modulation including CV File Amp Envelope Modulation and
Panning.

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

iVCS3 CV Files & Programming 5	
	

References	

EMS: EMS VCS3 “The Putney” User’s Manual…
https://www.manualslib.com/products/Ems-Vcs3-Putney-3970479.html

	

MVerb 1

MVerb: A Modified Waveguide Mesh Reverb

Plugin

Jon Christopher Nelson

University of North Texas College of Music,
Center for Experimental Music and Intermedia (CEMI)

Jon.nelson@unt.edu

Abstract. MVerb is a plugin that is based on a modified five-by-five 2D
waveguide mesh developed in Csound within the Cabbage framework.
MVerb is highly flexible and can generate compelling and unique rever-
beration effects ranging from traditional spaces to infinite morphing
spaces or the simulation of metallic plates or cymbals. The plugin incor-
porates a 10-band parametric EQ for timbrel control and delay random-
ization to create more unusual effects.

Keywords: Reverberation, Effects Plugin, Physical Modeling, Wave-
guide, Scattering Junction, Csound, Cabbage.

1 Introduction

Artificial reverberation can provide a compelling sense of acoustic space that fac-
tors significantly in the creation and production of digital audio. Digital reverber-
ation models have changed dramatically both in quality and complexity as com-
putational capabilities have evolved. These models include tapped recirculating
delays comprised of comb and allpass filters coupled with multitap delay lines [1],
physical models based on the projection of source vectors [2], impulse response
convolution models [3], temporal smearing via asynchronous granular synthesis
models [4], feedback delay networks [5] [6], closed waveguide mesh networks [3],
and a wide variety of hybrid models.

Of these models, waveguide meshes provide interesting creative possibilities for
great diversity of reverberation effects. The model for a classical waveguide mesh
consists of a network of 4-port scattering junctions connected with waveguides
that exhibit diverse delay times that can simulate different echo times and prom-
inent resonances within an acoustic space [7]. With a sufficient number of wave-
guides, this physical model can emulate a wide variety of room colors and sizes

2 Jon Christopher Nelson

as well as large plate reverberators and any number of other metallic (or non-
metallic) percussion instruments. Waveguide mesh boundaries reflect the signal
back into the mesh, inverting the signal with some signal loss and often filtering
the reflection to emulate the absorptive qualities of a given physical space. Since
it is a closed waveguide network, infinite reverbs will result unless a reflection
coefficient of less than 1.0 is utilized. MVerb is based on a modified waveguide
mesh that capitalizes on some of the unique possibilities of this physical model.

2 MVerb Waveguide Mesh Design

The classical 2D waveguide mesh consists of a network of 4-port scattering
junctions configured with intermediary waveguides (see figure 1).

Fig. 1. 4-Port Scattering Junction and 2D Waveguide Mesh

While MVerb is fundamentally based on this model, it includes minor modifi-
cations that were incorporated to facilitate both slightly more efficient coding
using Csound [8] within the Cabbage framework [9] and greater control and flex-
ibility. MVerb consists of a 5 x 5 mesh with parametric EQ embedded within each
scattering junction. A traditional 5 x 5 waveguide mesh includes a waveguide
between every horizontal and vertical adjacency as well as each boundary, result-
ing in 120 delays organized in discrete pairs. Within Csound, the classical 2D
waveguide mesh could be coded using UDOs to define each scattering junction

MVerb 3

and each connecting waveguide. However, the audio signal routing code connect-
ing the scattering junctions and delay lines is extensive. In an effort to simplify
this signal routing, the MVerb mesh model incorporates the waveguides within
the scattering junction UDOs. Specifically, each scattering junction includes only
the outgoing delays (half of each waveguide) with each of the 4 delays assigned a
single delay time. While this still requires the use of 100 delays (25 scattering
junctions with 4 outputs each), this modification provides greater efficiency and
ease in structuring the waveguide mesh while retaining a rich set of prominent
resonant frequencies.

Fig. 2. MVerb Mesh Design

In this model, the waveguides between adjacent scattering junctions will consist
of unequal delay values. Each unequal delay value will consequently have a
unique resonant frequency. In addition, the MVerb mesh model also allows for
variable delay lines.

The MVerb mesh modifications facilitate coding efficiencies through the incor-
poration of several primary UDOs. The EQ UDO creates a 10-band parametric
equalizer that is embedded within each scattering junction. The meshEQ UDO
defines a scattering junction and its associated output delay lines with identical
delay times as follows:

opcode meshEQ,aaaa,aaaaak
aUin,aRin,aDin,aLin,adel,kFB xin
afactor=(aUin+aRin+aDin+aLin)*-.5 ;calculate raw value

4 Jon Christopher Nelson

aUout vdelay aUin+afactor,adel,1000 ;calculate outputs
aRout vdelay aRin+afactor,adel,1000
aDout vdelay aDin+afactor,adel,1000
aLout vdelay aLin+afactor,adel,1000
aUout EQ aUout ;apply EQ UDO to each output
aRout EQ aRout
aDout EQ aDout
aLout EQ aLout
xout aUout,aRout,aDout,aLout
endop

After initializing the necessary delay lines, the code simply builds the mesh one

scattering junction at a time. The naming conventions for this 5 x 5 model assign
each scattering junction a letter (A through Y) with scattering junction inputs
and outputs designated as up (U), right (R), down (D), or left (L). Thus, the
audio signal aGD is the downward output from scattering junction G. The fol-
lowing code represents the top two rows of five scattering junctions using the
meshEQ UDO:

aAU,aAR,aAD,aAL meshEQ aAU,aBL,aFU,aAL,adel1,kFB
aBU,aBR,aBD,aBL meshEQ aBU,aCL,aGU,aAR,adel2,kFB
aCU,aCR,aCD,aCL meshEQ aCU,aDL,aHU,aBR,adel3,kFB
aDU,aDR,aDD,aDL meshEQ aDU,aEL,aIU,aCR,adel4,kFB
aEU,aER,aED,aEL meshEQ aEU,aER,aJU,aDR,adel5,kFB
aFU,aFR,aFD,aFL meshEQ aAD,aGL,aKU,aFL,adel6,kFB
aGU,aGR,aGD,aGL meshEQ aBD,aHL,aLU,aFR,adel7,kFB
aHU,aHR,aHD,aHL meshEQ aCD,aIL,aMU,aGR,adel8,kFB
aIU,aIR,aID,aIL meshEQ aDD,aJL,aNU,aHR,adel9,kFB
aJU,aJR,aJD,aJL meshEQ aED,aJR,aOU,aIR,adel10,kFB

MVerb code also includes a master feedback coefficient, kFB, that is applied to

each scattering junction as well as code to clear all delay lines. The plugin code
contains ample gain and DC offset control to minimize potential signal problems
prevalent in a closed waveguide mesh, thus providing convincing and controlled
infinite reverberation when using a reflection coefficient of 1.0.

MVerb 5

3 MVerb Features

Working within the Cabbage framework, MVerb incorporates a user interface
(see figure 4) that includes numerous end-user controls that modify and shape the
sonic result.

Fig. 3. MVerb User Interface

A variety of preset values can be selected to control an optional multitap delay
line that adds early reflections to the incoming audio signal with independent
output level control. Similarly, a number of preset delay times have been stored
for the user to select. These presets include more traditional concert spaces, very
colored or unusual reverbs, and effects with prominent resonances derived from
sampled cymbals. MVerb also allows the user to define 25 prominent resonant
frequencies, thus tuning each scattering junction output. The user interface also
includes parametric equalizer controls, a master reflection coefficient, a button to
clear all delays, and a master size control that applies a delay time multiplier to
every scattering junction delay line. Finally, in an effort to create some more
unusual and interesting effects, this plugin also includes an optional random de-
viation for each scattering junction delay value. This provides a possible means
of creating the sense of a very slowly evolving and morphing room or, conversely,
a rapidly changing and very noisy delay effect.

6 Jon Christopher Nelson

4 Conclusion

MVerb provides flexible and rich reverberation effect possibilities. While its cur-
rent instantiation is a stereo effect, future plans include the development of
MVerb plugins with various channel counts for inputs and outputs and better
user preset capabilities. In addition, greater exploration of the sonic properties of
meshes with a higher dimensionality (3D, 4D, . . . xD) and diverse configurations
may prove to be a fertile area of discovery. In particular, non-planar mesh struc-
tures with more arbitrary or random scattering junction connectivity and reflec-
tion boundary placement may facilitate the development of more unusual effects.

References

1. Schroeder, M. R.: Improved Quasi-Stereophony and “Colorless” Artificial Reverbera-
tion. Journal of the Acoustic Society of America 33(8), 1061-1064 (1961)

2. Moore, F. R.: A General Model for Spatial Processing of Sounds. Computer Music
Journal 7(3) 6-15 (1983)

3. Smith, J.: A New Approach to Reverberation Using Closed Waveguide Networks. In:
B. Truax (ed.) Proceedings of the 1985 International Computer Music Conference, pp.
47-53. Vancouver (1985)

4. Roads, C: The Computer Music Tutorial. MIT Press, Cambridge, Massachusetts
(1996)

5. Stautner, J. and Puckette, M.: Designing Multichannel Reverberation. Computer Mu-
sic Journal 6(1), 52-65 (1982)

6. Zölzer, U. DAFX Digital Audio Effects. John Wiley & Sons, Ltd, West Sussex, Eng-
land 2002

7. Smith, J.: Physical Audio Signal Procssing web site, https://ccrma.stan-
ford.edu/~jos/pasp/pasp.html

8. Csound site, https://csound.com
9. Cabbage site, http://cabbageaudio.com

Kairos - a Haskell Library for Live Coding
Csound Performances

Leonardo Foletto

Berklee College of Music

flttleonardo@gmail.com

Abstract. Kairos [1] is a library for the Haskell programming language

designed to live code patterns of Csound score instructions to be sent to

a running UDP server [2] of a pre prepared Csound orchestra.

Keywords: Live Coding, Csound, Haskell

1 Introduction

Within the context of the arts, live coding has seen an increasing adoption. To-
day, a growing community of artists who, already accustomed to using software
as a tool in their artistic practice, strive to find new methods to interact with
their machines in more personal and meaningful ways. In the past ten years,
many open source software tools have been developed to perform and compose
live coded music including SuperCollider[3], TidalCycles [4], Conductive[5], Sonic
Pi[6] .

Kairos is a live coding system inspired by some of the operational principles
of the above mentioned softwares, but born from the need of the author to create
an environment to perform and compose music more closer to his needs that feels
intuitive to use and provides a high degree of control with a simple, yet powerful
syntax.

2 System Overview

There are two main parts to the system: a Csound file, kairos.csd, and an
accompaning Haskell library. The focus of the project has been developing an
Haskell library to format patterns of data into Csound readable score to be sent
over a UDP network to a running instance of a Csound server.

2.1 Csound File

The file kairos.csd contains a number of pre defined instruments and global
e↵ects. All the instruments have been programmed to have a positive finite value
of p3 and are written to maximize the number of common pfields amongst all
the instruments.

Pfields shared amongst every instrument

2 Leonardo Foletto

p4 : amplitude (0 - 1)
p5 : reverb send (0 - 1)
p6 : delay send (0 - 1)
p7 : panning (0 - 1)

Example of a simple sampler instrument

<CsInstruments>

instr 1 ;Sampler

inchs filenchnls p8

if inchs = 1 then
aLeft diskin2 p8, p9
outs aLeft*p4* sqrt(1-p7), aLeft*p4* sqrt(p7)
garvbL = garvbL + p5 * aLeft * sqrt(1-p7)
garvbR = garvbR + p5 * aLeft * sqrt(p7)
gadelL = gadelL + aLeft * p6 * sqrt(1-p7)
gadelR = gadelR + aLeft * p6 * sqrt(p7)

else
aLeft, aRight diskin2 p8, p9
outs aLeft*p4* sqrt(1-p7), aRight*p4* sqrt(p7)
garbL = garvbL + p5 * aLeft * sqrt(1-p7)
garvbR = garvbR + p5 * aRight * sqrt(p7)
gadelL = gadelL + aLeft * p6 * sqrt(1-p7)
gadelR = gadelR + aRight * p6 * sqrt(p7)
endif

endin

</CsInstruments>

Di↵erently from the instruments, global e↵ects are all built to run forever
(p3 = -1) and use channels to manipulate their parameters, instead of using
pfields.

Example of a reverb global e↵ect

<CsInstruments>

;Reverb

garvbL, garvbR init 0

gkfbrev init 0.4
gkcfrev init 15000

Kairos 3

gkvolrev init 1

gkfbrev chnexport "fbrev", 1, 2, 0.4, 0, 0.99
gkcfrev chnexport "cfrev", 1, 2, 15000, 0, 20000
gkvolrev chnexport "volrev", 1, 2, 1, 0, 1

instr 550 ; ReverbSC

aoutL, aoutR reverbsc garvbL, garvbR, gkfbrev, gkcfrev
outs aoutL * gkvolrev , aoutR * gkvolrev
clear garvbL, garvbR

endin

</CsInstruments>

3 Haskell Library

3.1 Data Structures

The ensemble of instruments contained in kairos.csd gets triggered with in-
structions coming from the Kairos Haskell library. This is the part of the software
responsible for scheduling score events, sending them to Csound at the appro-
priate time and changing parameters of global e↵ects.

All of the instruments and e↵ects are represented in Haskell using the Instr
data type, which not only has information about the instrument number and
pfields of an instrument, but also about its status (active or inactive), the current
note to be played and the patterns of parameters for every pfield.

All of the instruments are collected in a data structure called Orchestra
that holds them and associates every instrument with a string that identifies it’s
name.

The two preceding instruments represented in Haskell with their Orchestra

sampler :: String -> IO Instr
sampler path = do
pfields <- newTVarIO $ M.fromList [(3,Pd 1),(4,Pd 1)

,(5,Pd 0),(6, Pd 0)
,(7,Pd 0.5),(8,Ps path)
,(9,Pd 1)] -- p8 : Sample path, p9 : pitch

emptyPat <- newTVarIO M.empty
return $ I { insN = 1

, pf = pfields
, toPlay = Nothing
, status = Stopped
, timeF = ""

4 Leonardo Foletto

, pats = emptyPat
}

reverb :: IO Instr
reverb = do
pfields <- newTVarIO $ M.fromList [(3,Pd (-1))]
emptyPat <- newTVarIO M.empty
return $ I { insN = 550

, pf = pfields
, toPlay = Nothing
, status = Stopped
, timeF = ""
, pats = emptyPat
}

defaultOrc :: IO Orchestra
defaultOrc = do
k <- sampler "/KairosSamples/kicks/Kick909.wav"
rev <- reverb
orc <- atomically $ newTVar $ M.fromList [("K909",k) ,("rev",rev)]
return $ orc

The Orchestra is held in a container named Performance that holds the
Orchestra and the informations about tempo, time signatures and rhythmic pat-
terns readily available to be used by the instruments.

The library is designed to be used within the GHCi [7] environment and can be
loaded and started running :script BootKairos.hs from within GHCi, launch-
ing it from the folder containing the script. This script also sets up a number
of convenient functions that help compose and modify patterns of instructions
easily.

3.2 Operational principles

To use the library, first start the Csound server running the file kairos.csd and
then launch an instance of GHCi and run the script BootKairos.hs. This script
will load the necessary modules of the library, run all of the necessary setup steps
to start a new Performance and also load many functions designed to reduce
the amount of typing necessary to perform and simplify the interaction with the
Csound orchestra.

To play an instance of an instrument a rhythmic pattern must be assigned
to it and then start the play loop.

Playing a four on the floor pattern with the kick instrument from before

Kairos> cPat "fourFloor" "K909" >> p "K909"

Kairos 5

Patterns of values can then be assigned to the exposed synthesis parameters
of the instrument. Every one of this pattern of values gets assigned an update
function that determine in which way the value for that parameter will be picked
for the next score event. The function can be picking a value from the list or
modify the list itself.

Changing the panning and volume parameters

Kairos> vol "K909" [Pd 1, Pd 0.8, Pd 0] randomize
Kairos> pan "K909" [Pd 0, Pd 1] nextVal

An alternative option is the params function, that allows to declare and
assign multiple parameters of pfields at the same time.

An example of the params function

Kairos> params "K909" [(keep, vol, [Pd 1]),(randomize, pan, toPfD [0, 1])]

4 Future Directions

The author uses the library in performances of live dance music and in a exper-
imental electronic band context in a setup with Eurorack modular synthesizers.

One of the features that will soon be introduced is the ability to have a shared
clock between multiple instances of Kairos to allow for ensemble performances.

On the musical side, the current focus of the research is on how to more
e↵ectively generate and manipulate streams of pfields in interesting ways. The
author is now focusing on fractal-based models, Markov chains and autonomous
agents.

References

1. Kairos Github repository, https://github.com/Leofltt/Kairos

2. Csound UDP Server, https://csound.com/docs/manual/udpserver.html

3. SuperCollider https://supercollider.github.io/

4. McLean, A. and Wiggins, G.: Tidal - Pattern Language for the Live Coding of

Music. In: Proceedings of the 7th Sound and Music Computing conference (2010)

5. Bell, R.: An Interface for Realtime Music Using Interpreted Haskell (2011)

6. Sonic Pi https://sonic-pi.net/

7. GHC/GHCi HaskellWiki, https://wiki.haskell.org/GHC/GHCi

https://github.com/Leofltt/Kairos
https://csound.com/docs/manual/udpserver.html
https://supercollider.github.io/
https://sonic-pi.net/
https://wiki.haskell.org/GHC/GHCi

The Hex System: a Csound-based Augmentation of
Hexaphonic Guitar Signal

Tobias Bercu,

 Berklee College of Music
tbercu@berklee.edu

Abstract. The impetus behind the Hex system was a desire to create
new guitar effects using Csound processing of hexaphonic guitar audio,
and to present these effects to the user in a format that allows playing
the instrument to meld with playing the effects. Processing one’s guitar
signal with a laptop or a desktop opens many doors, but can also be
cumbersome. The Hex system is meant to provide guitarists a smaller
and more liberated DSP apparatus that feels more like an augmentation
of the instrument itself than a separate module. The Hex system
processes audio via a Raspberry Pi running Csound. Using the Pi’s
onboard wifi, the system accepts control from TouchOSC, so that
parameters can be adjusted in real-time from a nearby smartphone. It
is intended for this smartphone to be attached to the guitar adjacent to
the pickup and tone controls. The Raspberry Pi and its audio hat are
housed in a small box, and this container is roofed by footswitches used
to engage and disengage effects.

Keywords: Csound, real-time guitar effects, DSP, hexaphonic,
Raspberry Pi

1 Introduction

The Hex system is a DSP prosthesis of sorts for guitar players, mainly intended
to process the 6-channel output of a hexaphonic guitar pickup. Its purpose is to
arm its user with a Csound-generated multi-effects suite comprising effects both
traditional and innovative. As a smartphone-controlled guitar pedal, it is meant
to present these DSP powers to the user as a natural extension of the
instrument to which the smartphone is attached.

2 Overview of Hardware and Software

2.1 Hardware

The basic hardware ingredients of the Hex system are a guitar, a hexaphonic
pickup, a splitter cable, a Raspberry Pi with an audio hat, a smartphone, and an
Arduino. For this build, a Graphtech Ghost hexaphonic pickup, a homemade
splitter cable, a Raspberry Pi 3 B+, an Audio Injector Octo Injector soundcard
from Flatmax Studios, a Samsung Galaxy S7, and an Arduino Mega were used,
respectfully. Figure 1 represents signal flow within the Hex system.

As most hexaphonic pickups send audio through a 13-pin cable, which
typically connects to a companion processing unit such as the Roland GR-55, it
was necessary to preempt the Octo Injector’s RCA female ADC inputs with a
splitter cable. The splitter cable feeds each of the six strings’ audio into its own
RCA head, and sends +9v, -9v, and a ground signal back to the hexaphonic
pickup using two 9v batteries wired in series.

The Arduino Mega (a standard Arduino Uno would suffice) monitors voltages
from eight on/off footswitches and sends their statuses to Csound via a USB
serial connection. The TouchOSC values sent via smartphone are used to
control the parameters of each effect. The Pi 3 B+ is used as a wifi source for
the transmission of the TouchOSC values.

2.2 Software

Each of the effects in HEX’s .csd is comprised of a single instrument or
combination of instruments that are inserted into and removed from the global
audio streams using the event_i and turnoff2 opcodes. An always-on control
instrument sends these on/off commands based on footswitch statuses received
from the Arduino via the Serialread opcode. An additional always-on control
instrument receives parameter values from a smartphone via TouchOSC and
assigns them to global k-rate variables.

This format was inspired by Iain McCurdy’s patch “MultiFX.csd”, with some of
the effects being copied verbatim. For now, they showcase the versatile nature
of the device. As one intention of creating this system has been to equip the
user with an arsenal of unique effects, these copied effects are partially
placeholders to be supplanted upon further optimization of the more
CPU-demanding effects that are still in development.

Table 1. Hex’s effects - made with Csound

Effect Description TouchOSC
Parameters

Arpeggiator Sequentially iterates notes
in a chord upon detection of
a transient

Trigger threshold
Tempo
Attack, Release
Octave mode

Hex-Wobble Rhythmic pitch bend Tempo
Magnitude

Pitch Shifter Uses the delay-line UDO Ratio
Feedback

Pitch-Tracking
Mono Synth

Uses pitchamdf analysis Note Duration
Waveform

Lofi Downsamples using fold
opcode

Fold amount

Filter Bandpass filter - stacked
Butterworth filters

Low cut
High Cut

Reverb Uses reverbsc opcode Size
Mix

Ringmod Uses poscil opcode Speed
Mix

2.3 Figures

Fig. 1. Hex’s components and the flow of audio and control signals..

3 Difficulties and Development

All Csound code for this project was originally written on a MacBook Pro using
CsoundQt, and a couple of unanticipated difficulties arose during the process of
porting the project to the Pi. There were two main issues to be reckoned with,
and dealing with them has given the author a few ideas about how to improve
the Hex system moving forward.

3.1 Intermittent Sound Card Detection

One challenging obstacle encountered during the build process was intermittent
sound card detection. The Audio Injector Octo sound card by Flatmax was the
only soundcard the author saw on the market with six channels of audio-rate
input, though others may exist. Though functional, the Octo was not always
detected by the Pi on boot. Other Octo users reported the same issue on the
Octo’s Github page and a script found there resets connection to the Octo 1

That script runs whenever Hex’s Pi boots up. One additional command was
added to the boot script to run Csound with the necessary RT audio module,
input and output device, and buffer size.

It turned out that Portaudio Callback was the only Octo-compatible RT Audio
Module; the others would either cause a crash or produce no sound or strange
noises.

This is a script called “fix.sh” registered in /home/pi/etc/rc.local to run at boot time.

#!/bin/bash

sudo modprobe -r snd_soc_audioinjector_octo_soundcard
sudo modprobe -r snd_soc_cs42xx8_i2c
sudo modprobe -r snd_soc_cs42xx8
sudo modprobe snd_soc_cs42xx8
sudo modprobe snd_soc_cs42xx8_i2c
sudo modprobe snd_soc_audioinjector_octo_soundcard

csound -+rtaudio=pa_cb -iadc0 -odac0 -B512 -b512 /home/pi/hex.csd

1 Audio Injector Octo Github support page, https://github.com/Audio-Injector/Octo/issues

https://github.com/Audio-Injector/Octo/issues

3.2 CPU Limit

Some of the effects originally envisioned and prototyped on the MacBook Pro
demand too much CPU to run stably on the Pi 3 B+. Further work is now
required if these effects are to be successfully integrated into the Hex system.

Table 2. Effects still in development.

Effect Description
Polyphonic Synth Uses pitchamdf opcode to

track pitch of each string on
which a transient is detected

Glissando Enging Uses pvsfreeze and pvscale
to freeze chords and slide
the frozen voices to notes in
the next detected chord

Live Granulator Granulates a short,
destructively-recorded buffer
of live input

Convolution
Engine

Performs real-time
convolution with pconvolve
and user-loaded IR

3.3 Development

Moving forward, the most seemingly cut and dry course of action is to switch to
a more powerful single board computer. The recently released Raspberry Pi 4
B may prove a timely supplicant. It boasts improved specs across the board
when compared to the 3 B+, including vastly improved RAM. The Pi 4 is
compatible with the Octo and the construction of a second Hex system based
around a Pi 4 is well underway here at Hex HQ at the time of writing.

The Asus Tinker Board is another affordable SBC that outperforms the Pi 3
B+ in some areas. Using a Github patch that was shared on the Audio Injector
Facebook page , and attempts were made to compile a debian kernel for the 2

Tinker Board that could support the Octo. The kernel runs and the card is
detected but does not produce sound as of yet.

4 Acknowledgements

Thanks to Dr. Richard Boulanger for sharing so much advice and guidance.
Thanks to Bill Bax for sharing his knowledge of breakout cables.

2Octo patch for Tinker Board, https://github.com/TinkerBoard/debian_kernel/pull/37

https://github.com/TinkerBoard/debian_kernel/pull/37

Algorithmic Composition with Open Music and

Csound: two examples

Fabio De Sanctis De Benedictis

ISSM “P. Mascagni” – Leghorn (Italy)
fabio.desanctis@consli.it

Abstract. In this paper, after a concise and not exhaustive review about
GUI software related to Csound, and brief notes about Algorithmic Com-
position, two examples of Open Music patches will be illustrated, taken
from the pre-compositive work in some author’s compositions. These
patches are utilized for sound generation and spatialization using Csound
as synthesis engine. Very specific and thorough Csound programming ex-
amples will be not discussed here, even if automatically generated .csd

file examples will be showed, nor will it be possible to explain in detail
Open Music patches; however we retain that what will be described can
stimulate the reader towards further deepening.

Keywords: Csound, Algorithmic Composition, Open Music, Electronic
Music, Sound Spatialization, Music Composition

1 Introduction

As well-known, “Csound is a sound and music computing system”([1], p. 35),
founded on a text file containing synthesis instructions and the score, that the
software reads and transforms into sound. By its very nature Csound can be
supported by other software that facilitates the writing of code, or that, provided
by a graphic interface, can use Csound itself as synthesis engine.

Dave Phillips has mentioned several in his book ([2]): hYdraJ by Malte
Steiner; Cecilia by Jean Piche and Alexander Burton; Silence by Michael Go-
gins; the family of HPK software, by Didiel Debril and Jean-Pierre Lemoine.1

The book by Bianchini and Cipriani encloses Windows software for interfacing
Csound, and various utilities ([6]). We can also recall score generation software
like Cmask, Cscore, Pmask, and other ones like AthenaCL, Ceres3, Rosegarden,
Rain, only to quote some, that can export their outputs in the form of a .sco
file.2

1
Cecilia software described by Dave Phillips is not the actual Cecilia 5 (http://
ajaxsoundstudio.com/software/cecilia/) developed by Olivier Bélanger. About
Cecilia 5 we send back to [3]. HPK Composer software family articulates in:
HPKC22, HPKComposer 3, HPKComposer AV, HPKComposerCsound (see [4]) and
AVSynthesis (see [5]).

2 Some softwares can only be used in a Linux environment, other ones are no
more maintained. Anyway this excursus accounts the widespread custom of pair-
ing Csound to graphic interface software.

http://ajaxsoundstudio.com/software/cecilia/
http://ajaxsoundstudio.com/software/cecilia/

2 Fabio De Sanctis De Benedictis

Today on Csound site we find links to CsoundQt, Blue, Cabbage, WinXound.

Algorithmic Composition and Csound

Algorithmic Composition, as discussed in other place,3 can be di↵erentiated into
constructive and declarative approach. Constructive when the software is used
to develop compositional material, declarative when instructions for a complete
musical composition are furnished to the software. These definitions fit to instru-
mental composition, while in electronic music, particularly according to David
Cope’s CGS category, Computer Generated Sound, the boundaries are less de-
fined, so at the same time we can fall into both constructive and declarative
approach.

Also Csound owns Algorithmic Composition possibilities and can be used
both in a constructive and declarative manner. Giorgio Zucco o↵ers some inter-
esting examples in his book ([10]).

The code underlying the performance of Solo by Stockhausen, developed by
Francioni ([11]) can be a good example of declarative approach. However Algo-
rithmic Composition is not the main aim of Csound functions, so the alliance
with a software such as Open Music appears particularly suitable for this pur-
pose.4 In following section two examples drawn from my compositions will be
treated.

Open Music and Csound

Csound has been used by the writer both directly programming the code, and re-
curring to graphic interfaces like HPKComposerCsound for using simple Csound
instruments, but generating complex scores.

In Figure 1 an example relative to the generation of clouds of bell-like sounds
in FM, opcode fmbell, used in Anagrammi, for Flute and live electronics. Thus
the passage to use Open Music as interfacing tool to Csound has been a natural
evolutive process. Open Music has been utilized in Balaenoptera, for Bass Clar-
inet and live electronics, and in Fabula, for Baritone Sax and live electronics,
both quadraphonic works, for realizing electronic materials and spatialization.
Below some patches related to Csound will be described.

In Balaenoptera Open Music has been mainly used for developing audio ma-
terial and for its spatialization, by using several libraries, both Ircam and free.5

Because it is frequent in my compositions to allude to the ambiguity between
natural and artificial, Csound has been called into question by Marco Stroppa’s

3 See [7], [8] and [9]
4 Also PWGL o↵ers interesting examples of use of Csound, thanks to Zucco’s PWC-
sound library, but to respect the limits of this paper it is not possible to show any
example in this place.

5 A more complete description of the use of Open Music for developing audio material
in this work is in [14]

Algorithmic Composition with Open Music and Csound: two examples 3

Fig. 1. HPKComposerCsound : selections of frequencies in an instrument based on
fmbell opcode.

OMChroma library, creating two instruments ad hoc founded on STKClarinet
opcode.6 The used Open Music patch can be seen in Figure 2. Here a chord
sequence made in Audiosculpt, created by audio analysis of a Bass Clarinet
multiphonic, is used as score for Csound and rendered by both STKClarinet in-
struments.7 Instruments parameters are chosen in random way, pitch by pitch,
by om-random functions inside selected boundaries (1-5, 100-50, 1-12, 1-12 e
50-128).

Below the beginning of the score of the second instrument:

<CsoundSynthesizer>
<CsOptions>
-W -odac
</CsOptions>
<CsInstruments>
; HEADER
sr = 44100
kr = 44100

6 About using Open Music and Csound for audio generation and transformation, see:
[15], [16], [17], [18] and [19].

7 About realizing personal instruments in OMChroma we refer to the very good online
documentation, described in [20]

4 Fabio De Sanctis De Benedictis

Fig. 2. Opcode STKClarinet as OMChroma class.

ksmps = 1
nchnls = 1
;INSTRUMENTS
;==============
instr 1
;==============
;Instrument 1 from file stk2
;asig STKClarinet ifreq, amp, kstiff, kv1, knoise, kv2,
;klfo, kv3, klfodepth, kv4, kbreath, kv5
kenv linseg 0,p3*0.1,p4*0.01,p3*0.9,0
asig STKClarinet p5,p4,2,p6,4,p7,11,p8,1,p9,128,p10
out asig*kenv
endin
</CsInstruments>
<CsScore>
;This synthesis process called my_synt started on 3 26, 2019 - AT 16:10 (24 sec)
; Global Variables: sr = 44100, kr = 44100, ksmps = 1, nchnls = 1
; Defined by chroma classes:
; Loaded tables:
; Generated tables:

;------ Lines for event n. 1 --------
i1 0.000 0.830 1000.000 148.710 5.000 66.000 9.000 1.000 78.000
i1 0.000 0.830 1000.000 299.143 1.000 66.000 12.000 10.000 84.000
i1 0.000 0.830 1000.000 745.136 4.000 100.000 4.000 6.000 91.000

Algorithmic Composition with Open Music and Csound: two examples 5

i1 0.000 0.830 1000.000 886.121 3.000 81.000 8.000 9.000 62.000
i1 0.000 0.830 1000.000 148.710 1.000 58.000 4.000 5.000 77.000
i1 0.000 0.830 1000.000 298.798 2.000 72.000 12.000 11.000 90.000
i1 0.000 0.830 1000.000 745.136 2.000 100.000 7.000 6.000 60.000
i1 0.000 0.830 1000.000 885.098 5.000 73.000 5.000 6.000 119.000
i1 0.166 8.165 1000.000 149.226 3.000 53.000 7.000 5.000 116.000
i1 0.166 8.165 1000.000 297.764 5.000 71.000 3.000 9.000 62.000

In Fabula we have made a progress towards a more di↵use use of automatic
sound spatialization, mainly relying on OMPrisma library by Marlon Schu-
macher.8 In Figure 3 an example of a patch, e↵ective with long sounds, that
makes a very fast spatialization, acelerating or decelerating, so disintegrating or
aggregating the sound.

Fig. 3. Quadraphonic spatialization of an audio file acelerating or decelerating, at great
velocity, causing sound disintegration or aggregation. Inside 3D-TRAJECTORY object
chaotic trajectories and their velocities are visualized.

The curves on the top must be selected for choosing an accelerating or de-
celerating process, while X-Y coordinates of each trajectory point are random
determined by om-random functions, in the top on the right of the patch.

Conclusion

We have seen how it is possible to use Open Music together with Csound, mainly
using OMChroma and OMPrisma libraries. However that is not the unique way

8 About using OMPrisma for spatialization and spatialized sound synthesis see: [21],
[22] and [23].

6 Fabio De Sanctis De Benedictis

to couple Open Music and Csound. Only to quote some: the possibility to ex-
port Open Music results in di↵erent formats like MIDI and XML permits to
utilize very refined musical structures inside Csound; it could be possible to gen-
erate score data by algorithmic processes; the possibility of generating personal
Csound instruments in OMChroma opens virtual infinite possibilities, not ex-
cluding the conversion of historical Csound instruments in Open Music classes,
to be used inside the software. This is only the tip of the iceberg.

References

1. Lazzarini, V.: Computer Music Instruments. Foundations, Design and Development.
Springer 2017, p. 35.

2. Phillips, D.: Linux musica e suoni. Hops Libri, Milano 2001, pp. 226-304 (or. ed.
Linux Music & Sound. No Starch Press, San Francisco 2000).

3. Blanger O.: Cecilia 5, la bote outils du traitement audio-numerique. In: JIM2014 -
Journes d’Informatique Musicales, 21-23 mai 2014, Bourges, France.

4. Lemoine J.P.: HPKComposer A Csound 5.0 based Audio Video Composition Tool.
Csound Journal, Issue 5, January 1, 2007. Internet: http://csoundjournal.com/
issue5/HPKcomposer.html.

5. Phillips D.: Composing With Csound In AVSynthesis. Csound Journal, Is-
sue 10, January 19, 2009. Internet: http://csoundjournal.com/issue10/

avs-cs-composition.html.
6. Bianchini R. and Cipriani A.: Il Suono Virtuale. Sintesi ed elaborazione del suono

– Teoria e Pratica con Csound. ConTempo, Roma 2001.
7. De Sanctis De Benedictis, F.: Dall’analisi musicale alla composizione e formaliz-

zazione algoritimica: esempi applicativi con PWGL. In: MUSICHE LIQUIDE, XX
Colloquio di Informatica Musicale. Internet: http://cim.lim.di.unimi.it/2014_
CIM_XX_Atti.pdf

8. Agon C., Assayag G and Bresson J.: The OM Composers Book. Volume One. Edi-
tions Delatour France/Ircam, Parigi 2006.

9. Bresson J., Agon C. and Assayag G.: The OM Composers Book. Volume Two.
Editions Delatour France/Ircam, Parigi 2008.

10. Zucco, G.: Sintesi digitale del suono. Laboratorio pratico di Csound, Giancarlo
Zedde editore, Torino 2012 (English edition: Inside Csound, Giancarlo Zedde editore,
Torino 2014).

11. Francioni E.: SOLO MV 10.1. Solo Multiversion for Stockhausen’s Solo [N.19].
Csound Journal, Issue 13, January 19, 2010. Internet: http://www.csounds.com/
journal/issue13/solo_mv_10_1.html

12. Avantaggiato, M.: Composizione assistita e processi di trasferimento di dati musi-
cali da PWGL a Csound. In: XVIII CIM - Colloquio di Informatica Musicale, Torino-
Cuneo, 58 Ottobre 2010. Internet: http://cim.lim.di.unimi.it/2010_CIM_XVIII_
Atti.pdf.

13. Lanza M., Verlingieri G. and Biagioni N.: LA LIBRERIA OPENMUSIC
om4Csound. INTRODUZIONE E PROGETTO DI DOCUMENTAZIONE. In:
XVIII CIM - Colloquio di Informatica Musicale, Torino – Cuneo, 58 Ottobre 2010.
Internet: http://cim.lim.di.unimi.it/2010_CIM_XVIII_Atti.pdf.

14. De Sanctis De Benedictis F.: Electronic sound creation in Balnoptera for bass
clarinet, electronic sounds, and live electronics. In: Bresson J., Agon C. and As-
sayag G. (eds.) THE OM COMPOSERS BOOK. Volume 3, Editions DELATOUR
FRANCE/Ircam-Centre Pompidou, Parigi 2016.

http://csoundjournal.com/issue5/HPKcomposer.html
http://csoundjournal.com/issue5/HPKcomposer.html
http://csoundjournal.com/issue10/avs-cs-composition.html
http://csoundjournal.com/issue10/avs-cs-composition.html
http://cim.lim.di.unimi.it/2014_CIM_XX_Atti.pdf
http://cim.lim.di.unimi.it/2014_CIM_XX_Atti.pdf
http://www.csounds.com/journal/issue13/solo_mv_10_1.html
http://www.csounds.com/journal/issue13/solo_mv_10_1.html
http://cim.lim.di.unimi.it/2010_CIM_XVIII_Atti.pdf
http://cim.lim.di.unimi.it/2010_CIM_XVIII_Atti.pdf
http://cim.lim.di.unimi.it/2010_CIM_XVIII_Atti.pdf

Algorithmic Composition with Open Music and Csound: two examples 7

15. Bresson J., Stroppa M. and Agon C.: Symbolic Control of Sound Synthesis in
Computer-Assisted Composition. In: International Computer Music Conference,
2005, Barcelona, Spain.

16. Bresson J. and Agon C.: Temporal Control over Sound Synthesis Processes. In:
Sound and MusicComputing (SMC06), 2006, Marseille, France.

17. Agon C., Bresson J. and Stroppa M.: OMChroma: Compositional Control of Sound
Synthesis. Computer Music Journal, 35:2, pp. 6783, Summer 2011.

18. Bresson J. and Nichoin R.: Implémentations et contrle du synthétiseur CHANT
dans OpenMusic. In: Actes de Journées d’Informatique Musicale, Saint-Etienne,
France, 2011.

19. Stroppa M., Lemouton S. and Agon C.: omChroma: vers une formalisation compo-
sitionnelle des processus de synthèse sonore. In: Journées d’Informatique Musicale,
9 e édition, Marseille, 29 - 31 mai 2002.

20. Richelli L.: La Libreria OpenMusic OMChroma - Documentazione online. In: Pro-
ceedings of XX CIM, Roma, October 20-22, 2014. Internet: http://cim.lim.di.
unimi.it/2014_CIM_XX_Atti.pdf.

21. Scumacher M. and Bresson J.: Compositional Control of Periphonic Sound Spatial-
ization: In: 2nd International Symposium on Ambisonics and Spherical Acoustics,
IRCAM, Paris, May 6-7, 2010.

22. Bresson J., Agon C. and Schumacher M.: Représentation des données de contrôle
pour la spatialisation dans OpenMusic. In: Journées d’Informatique Musicale, 15ème
édition, Rennes, 18-20 mai 2010.

23. Schumacher M. and Bresson J.: Spatial Sound Synthesis in Computer-Aided Com-
position. Organised Sound 15(3): 271-289 Cambridge University Press, 2010.

http://cim.lim.di.unimi.it/2014_CIM_XX_Atti.pdf
http://cim.lim.di.unimi.it/2014_CIM_XX_Atti.pdf

An opcode implementation of a finite di↵erence

viscothermal time-domain model of a tube

resonator for wind instrument simulations

Alex Hofmann1, Sebastian Schmutzhard2, Montserrat Pàmies-Vilà1, Gökberk
Erdoğan3, and Vasileios Chatziioannou1 ?

1 Dept. of Music Acoustics, University of Music and Performing Arts Vienna, Austria
2 Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria

3 Dept. of Electrical & Electronics Engineering Boğaziçi University, Istanbul, Turkey
corresponding author: hofmann-alex@mdw.ac.at

Abstract. This paper presents an opcode for Csound, that is based on
a physical time-domain model of a closed-open tube resonator which is
capable of simulating wind instruments like clarinets or saxophones. The
tube model hereby considers sound radiation parameters as well as vis-
cothermal losses that occur inside the tube. The model was implemented
in C++ using the Csound Plugin Opcode Framework. The resontube op-
code allows users to provide complex geometries for the model construc-
tion in k-time together with arguments for sound radiation and pick-up
position. The opcode is published together with its source code as a git
repository including documentation and examples.

Keywords: csound, opcode, physical model, resonator, tube

1 Introduction

Physical modelling-based sound synthesis is an estabilished technique in the field
of computer music [11] and is well supported by a large number of opcodes in
Csound [7]. A majority of physical models available for Csound are based on the
digital waveguide method4 (e.g. opcodes wgclar, wgflute, wgbow and opcodes
from the Synthesis Toolkit (STK) by Cook and Scavone [4,9]).

Digital waveguides are computationally e�cient algorithms that use simple
delay lines to model a wave travelling in space. When the wave hits a boundary it
is reflected. Depending on the boundary condition the sound wave is damped and
may change its phase. In digital waveguides, boundary conditions are modelled
by inserting filters into the delay line that mimic the e↵ect of the respective
boundary. The abstraction of the complex physical phenomena that happen with

? This research was supported by the Austrian Science Fund (FWF) P28655-N32
and the“mdw Call fuer Artistic Research Projekte” by the University of Music and
Performing Arts Vienna. The authors like to thank Rory Walsh and Steven Yi for
their support via the Csound Slack Chat.

4 http://www.csounds.com/manual/html/SiggenWavguide.html

2 Hofmann et al.

musical instruments as simple delay+filter algorithms allows for computationally
e�cient code that can easily run in real-time on consumer computers. However,
this may restrict the model complexity and the quality of the sound [6].

The general approach to physical modelling directly considers the di↵erential
equations that describe the oscillating system. These can be solved numerically,
using a variety of methods [12]. The prevalent approach in the last decades is
to discretise the model equations using the finite di↵erence method [2,1]. This
approach might require a large number of computations but is capable of pro-
ducing more realistic sounds. As of our knowledge, there are currently only three
opcodes in Csound that make use of finite di↵erences for physical modelling of
musical instruments, namely barmodel (model of a metal bar), prepiano (model
of a prepared piano string), and platerev (model of a resonating two dimen-
sional rectangular plate).

This paper presents a new opcode to extend Csound by a mathematical time-
domain wave propagation model for a closed-open tube resonator that takes
viscothermal losses into account and allows for a varying cross-sectional area, as
found in wind instruments such as clarinets or saxophones [10].

2 Tube Resonator Model

This section gives a short summary of the physical tube resonator model that is
the basis for the new opcode. A detailed description, including a validation of
this model can be found in [10].

A tube of length L is considered, with a cross-sectional area S(x), 0 x L.
The time-domain model for the dynamics of the pressure p and the particle
velocity v is given by

@xp+ ⇢@tv + zv ⇤ v = 0, @x(Sv) +
S

⇢c2
@tp+ Sy✓ ⇤ p = 0, (1)

where * denotes a convolution with respect to time, and the functions zv and y✓
are the time domain versions of the series impedance Z and shunt addmitance
Y . The boundary conditions are given by v(t, 0) = vin(t) at x = 0 and for x = L

p(t, L) = S(L)zr ⇤ v(t, L), (2)

where zr is a stipulated radiation impedance. The convolutions zv ⇤ v and y✓ ⇤ p
are related to the viscothermal losses along the tube. For the computational
algorithm used in this opcode, we replace equation (1) by the approximation

@xp+ ⇢@tv +R0v +
KX

k=1

wk = 0, @x(Sv) +
S

⇢c2
@tp+ S

KX

k=1

qk = 0, (3a)

where wk(t) = Rk

tZ

0

e�Lk(t�⌧)@tv(⌧)d⌧, k = 1, . . . ,K (3b)

and qk(t) = Gk

tZ

0

e�Ck(t�⌧)@tp(⌧)d⌧, k = 1, . . . ,K. (3c)

Tube Resonator Opcode 3

Techniques for the computation of the coe�cients Rk, Lk, Gk and Ck are
discussed in [10,3]. We set K = 4, since we observed that taking K larger than
four does not audibly change the result. The boundary condition is approximated
by

S(L)Rr@tv(t, L) = Lrp(t, L) + @tp(t, L), (4)

for certain coe�cients Rr and Lr, see [2]. Using finite di↵erences to approximate
the derivatives, we compute approximations pnm, vnm, wn

k,m and qnk,m to the so-
lutions p, v w and q of (3), respectively, at discrete points (tn, xm) in time and
space, where tn = n�t, n = 0, 1, 2 . . . and xm = m�x for m = 0, . . . ,M and
L = M�x, for fixed �t and �x. pn+1

m and vn+1
m are iteratively computed from

results obtained at previous time steps. The derivation of the finite di↵erence
scheme is given in [10]. The boundary condition on the left gives for vn+1

0

vn+1
0 = vn+1

in . (5)

Equation (3a) is discretised by finite di↵erences. We compute vn+1
m ,m = 1, . . . ,M

from
pnm � pnm�1

�x
+ ⇢

vn+1
m � vnm

�t
+R0,mvn+1

m +

KX

k=1

e�Lk,m�twn

k,m +Rk,m(vn+1
m � vnm)e�Lk,m

�t
2

�
= 0.

(6)

and pn+1
m , m = 0, . . . ,M � 1 from

Sm+1v
n+1
m+1 � Smvn+1

m

�x
+

Sm

⇢c2
pn+1
m � pnm

�t
+

Sm

KX

k=1

e�Ck,m�tqnk,m +Gk,m(pn+1

m � pnm)e�Ck,m
�t
2

�
= 0.

(7)

Taking finite di↵erences in (4) yields for m = M

SMRr
vn+1
M � vnM

�t
= Lrp

n+1
M +

pn+1
M � pnM

�t
, (8)

from which pn+1
M can be computed. Finally for k = 1, . . . ,K and m = 1, . . . ,M ,

wn+1
k,m and qn+1

k,m are updated by

wn+1
k,m = e�Lk,m�twn

k,m +Rk,m(vn+1
m � vnm)e�Lk,m

�t
2 , (9)

and

qn+1
k,m = e�Ck,m�tqnk,m +Gk,m(pn+1

m � pnm)e�Ck,m
�t
2 . (10)

4 Hofmann et al.

3 Opcode Implementation

The tube model is implemented in C++ following the Csound Plugin Opcode

Framework [6]. All code is made available as a public git repository 5

The implementation of the resontube opcode, a tube resonator with vis-
cothermal losses as described in Section 2, can be found in the file resonators/
resontube.cpp. A library of functions is given in src/tube.cpp and constants
are in src/const.cpp. Following, we give an overview of the implementation of
the model as an opcode for Csound.

Initialisation: When the opcode is loaded (init()), an equispaced grid in the
longitudinal direction of the tube with M grid points is instantiated. Based on
the user given geometry, the cross sectional area S is calculated for each grid
point (see Figure 1). The grid consists of five csound arrays (csnd::AuxMem<MYFLT>)
in which the status of the tube is processed. The size of the arrays is initially
allocated for Mmax=400 (src/const.cpp) so that no additional memory needs
to be allocated during runtime, even when the user is changing the length of the
tube. The five main arrays are vnew for the particle velocity (vn+1

m ,m = 1, . . . ,M
from eq.6), pnew for the air pressure (pn+1

m from eq. 7), S for cross sectional
area at each grid point (Sm), and qloss and wloss for the viscothermal loss
related variables (wn+1

k,m and qn+1
k,m given in eq. 9 & 10). AuxMem iterators (e.g.

csnd::AuxMem<MYFLT>::iterator iter pnew) are created for each array. Com-
putations on the arrays are only done within the range m = 0, . . . ,M . As a two-
point scheme in time is used, the algorithm requires a memory of the previous
tube state. Therefore, a copy of all grid values needs to be preserved in additional
arrays (pold, vold, qlossold, wlossold) with the respective iterators.

In this model, two types of losses are calculated. A) radiation losses (rad_alphaS)
at the end of the tube where the sound is radiated out of the tube, depend-
ing on the cross sectional area at the last grid point as given in eq.(4). B)
viscothermal losses that apply at each grid point along the virtual tube are
calculated. Factors for the convolutions in eq.(1) are prepared in the function
compute_loss_arrays().

Runtime: During runtime (aperf()), it is checked if any of the k-rate input
arguments (length, geometry, see Section 4 for details) were changed by the user.
If this happens, the grid has to be re-computed. This involves calculating the
required number of grid points (M < Mmax), the spacing of the grid points
(dx), the cross sectional area (S) at each grid point (x), as well as the losses. To
maintain the wave inside the tube (pressure, velocity, losses), all new grid arrays
are updated with interpolated values taken from the preserved grid arrays.

5 https://github.com/ketchupok/half-physler/tree/visco_pointers. Currently,
the repository holds three slightly di↵erent opcodes. Two are tube resonators with-
out viscothermal losses, used in a di↵erent project [5], where halfphysler bela is
specifically optimised to run on the ultra-low latency embedded computing platform
Bela [8].

https://github.com/ketchupok/half-physler/tree/visco_pointers

Tube Resonator Opcode 5

In the audio-loop (for (auto & o sound : out sound) {...}), the wave
propagation in the tube is computed for each time step (sample), and the audio
I/Os are assigned. An input signal is given to the model as a particle velocity
to the closed end of the tube (vnew[0] = in;). Two di↵erent audio outputs
are assigned. Out_Feedback returns the pressure at the beginning of the tube
(pnew[0]) prior to computing the next time step, whereas o_sound is returning
the pressure at a variable grid point pnew[x], x < M after the update func-
tion update_visco()

6. The function update_visco() updates the pressure and
velocity properties according to equations (6) and (7). Update_losses() is up-
dating the loss arrays following equations (9) and (10). Finally the status of the
grid is copied to pold & vold to be preserved for the next call of aperf().

Fig. 1. Schematic of the tube model with a closed end at the left side and an open end
at the right side. Geometry is given in segments as Csound arrays. Here an example
with four segments from which the cross-sectional area (S) is computed for each grid
point.

4 Usage

The resontube opcode implements a tube resonator with one closed and one
open end, similar to the resonator of a clarinet or a saxophone. An overview
of all user parameters of the opcode including a description of the underlying
physical parameters is given in Table 1. In Csound the opcode is called by:

aFeedb, aSnd resontube aVelocity, kLen, kSegLengths[], kRadiiIn[],

kRadiiOut[], kCurveType[], [kEndReflect,

kDensity, kPickPos, kComputeVisco]

The resonator is driven by an input particle velocity (aVelocity), a param-
eter that describes the speed of the air entering the tube, for example via a
single-reed instrument mouthpiece. The second input parameter kLen was intro-
duced, to allow to change the resonance frequency of the resonator in a woodwind

6 To save CPU, computation of all viscothermal losses can be turned o↵
(computeVisco=0), and respectively the function update_vp() is called

6 Hofmann et al.

instrument-like style. A given kLen in meters cuts the resonator at this point,
similar to the function of opening toneholes at acoustic woodwind instruments.

The initial geometry of the entire resonator is given in segments via the
Csound arrays kSegLengths[], kRadiiIn[], kRadiiOut[], kCurveType[]. Each
segment is defined by its length, input radius, output radius and an interpola-
tion curve type. We allow up to 25 segments. The example below gives a good
approximation of a Bb-flat clarinet geometry using only 4 segments.

kSegLengths[] fillarray 0.0316, 0.051, .3, 0.02

kRadiiIn[] fillarray 0.0055, 0.00635, 0.0075, 0.0075

kRadiiOut[] fillarray 0.0055, 0.0075, 0.0075, 0.0275

kCurveType[] fillarray 1, 1, 1, 2

Additional parameters to shape the sound by modifying the end reflection, the
air density and the pick-up position along the tube are provided as k-rate inputs.
An option to switch between the computation of viscothermal losses or not was
added, which allows real-time playback also for complex geometries and long
resonators on consumer PCs or embedded platforms like Bela [8].

5 Discussion

The presented opcode extends Csound by a finite di↵erence model of a tube
resonator, similar to resonators we find in clarinets or saxophones. Publishing
the model for Csound allows live-electronic performers, composers or instrument
makers to explore numerical modelling in an environment that handles I/O man-
agement and allows to combine physical modelling with other signal processing
opcodes. Exciting experiments are possible when using Csound’s capability of
creating an internal feedback (ksmps=1), as shown in one of the online examples.
A future version of the opcode could involve an extension to an open-open tube
(flute) resonator, as well as adding details like tonehole geometry or register key
modeling.

References

1. S. Bilbao. Direct simulation of reed wind instruments. Computer Music Journal,
33(4):43–55, 2009.

2. S. Bilbao. Numerical sound synthesis. John Wiley & Sons, 2009.
3. S. Bilbao and R. Harrison. Passive time-domain numerical models of viscothermal

wave propagation in acoustic tubes of variable cross section. JASA, 140(1):728–
740, 2016.

4. P. Cook. Real Sound Synthesis for Interactive Applications. AK Peters, 2002.
5. A. Hofmann, V. Chatziioannou, S. Schmutzhard, G. Erdoğan, and A. Mayer. The

half-physler. In Proc. NIME 2019, page (accepted), Porto Allegre, BR, 2019.
6. V. Lazzarini. The csound plugin opcode framework. In SMC, pages 267–274, 2017.
7. V. Lazzarini, S. Yi, J. �tch, J. Heintz, Ø. Brandtsegg, and I. McCurdy. Physical

Models, pages 385–405. Springer International Publishing, Cham, 2016.

Alessandro Petrolati

Alessandro Petrolati

Alessandro Petrolati

Alessandro Petrolati

