Skip to content

pvsfilter

Multiply amplitudes of a pvoc stream by those of a second pvoc stream, with dynamic scaling.

Syntax

fsig pvsfilter fsigin, fsigfil, kdepth [, igain]

Performance

fsig -- output pv stream

fsigin -- input pv stream.

fsigfil -- filtering pvoc stream.

kdepth -- controls the depth of filtering of fsigin by fsigfil .

igain -- amplitude scaling (optional, defaults to 1).

Here the input pvoc stream amplitudes are modified by the filtering stream, keeping its frequencies intact. As usual, both signals have to be in the same format.

⚠ Warning

It is unsafe to use the same f-variable for both input and output of pvs opcodes. Using the same one might lead to undefined behavior on some opcodes. Use a different one on the left and right sides of the opcode.

Examples

kfreq  expon 500, p3, 4000           ; 3-octave sweep
kdepth linseg 1, p3/2, 0.5, p3/2, 1  ; varying filter depth

asig  in                             ; input
afil  oscili  1, kfreq, 1            ; filter t-domain signal

fim   pvsanal  asig,1024,256,1024,0  ; pvoc analysis
fil   pvsanal  afil,1024,256,1024,0  
fou   pvsfilter fim, fil, kdepth     ; filter signal
aout  pvsynth  fou                   ; pvoc synthesis

In the example above the filter curve will depend on the spectral envelope of afil; in the simple case of a sinusoid, it will be equivalent to a narrowband band-pass filter.

Here is an example of the use of the pvsfilter opcode. It uses the file pvsfilter.csd.

Example of the _pvsfilter_ opcode.
<CsoundSynthesizer>
<CsOptions>
; Select audio/midi flags here according to platform
-odac    ;;;realtime audio out
;-iadc    ;;;uncomment -iadc if realtime audio input is needed too
; For Non-realtime ouput leave only the line below:
;-o pvsfilter.wav -W ;;; for file output any platform
</CsOptions>
<CsInstruments>

sr = 44100
ksmps = 32
nchnls = 2
0dbfs  = 1

;; example written by joachim heintz 2009

giSine          ftgen           0, 0, 4096, 10, 1
giBell          ftgen           0, 0, 4096, 9, .56, 1, 0, .57, .67, 0, .92, 1.8, 0, .93, 1.8, 0, 1.19, 2.67, 0, 1.7, 1.67, 0, 2, 1.46, 0, 2.74, 1.33, 0, 3, 1.33, 0, 3.76, 1, 0, 4.07, 1.33, 0; bell-like (after Risset)

instr 1
ipermut     = p4            ; 1 = change order of soundfiles 
ifftsize        = 1024
ioverlap        = ifftsize / 4
iwinsize        = ifftsize
iwinshape       = 1             ; von-Hann window
Sfile1          = "fox.wav"
ain1            soundin Sfile1
kfreq           randomi 200, 300, 3
ain2            oscili .2, kfreq, giBell
;ain2           oscili          .2, kfreq, giSine; try also this 
fftin1          pvsanal ain1, ifftsize, ioverlap, iwinsize, iwinshape; fft-analysis of file 1
fftin2          pvsanal ain2, ifftsize, ioverlap, iwinsize, iwinshape; fft-analysis of file 2
if ipermut == 1 then
fcross          pvsfilter       fftin2, fftin1, 1
else
fcross          pvsfilter       fftin1, fftin2, 1
endif
aout            pvsynth fcross
                outs            aout * 30, aout * 30
endin

</CsInstruments>
<CsScore>
i 1 0 2.757 0; frequencies from fox.wav, amplitudes multiplied by amplitudes of giBell
i 1 3 2.757 1; frequencies from giBell, amplitudes multiplied by amplitudes of fox.wav
e
</CsScore>
</CsoundSynthesizer>

See also

Tools for Real-time Spectral Processing (pvs opcodes)

Credits

Author: Victor Lazzarini
November 2004

New plugin in version 5

November 2004.